
Tutorial Problems #9
MAT 292 – Calculus III – Fall 2014

Solutions

4.5.11 We look separately at the equations:

y′′ + y′ + 4y = et, (1)

and

y′′ + y′ + 4y = e−t, (2)

since 2 sinh(t) = et − e−t.
For (1) we look for a special solution of the form Aet. Substituting this into (1) we get that A = 1/6.

For (2) we look for a special solution of the form Be−t. Substituting this into (2) we get that B = −1/4.

Since the general solution of the linear equation

y′′ + y′ + 4y = 0

is given by

yl(t) = c1e
−t/2 cos(

√
15/2) + c2e

−t/2 sin(
√

15/2),

as −1±i
√
15

2 are the roots of λ2 + λ+ 4 = 0, we have that the general solution of the equation

y′′ + y′ + 4y = 2 sinh(t) (3)

is given by

y(t) = c1e
−t/2 cos(

√
15/2) + c2e

−t/2 sin(
√

15/2) +
1

6
et − 1

4
e−t.

4.5.27 a) Follows directly from substitution.

b) We use the method of integrating factors and we have that:

w(t) = e5t
∫

2e−5tdt+ Ce5t = Ce5t − 2

5
. (4)

c) Integrating (4) we get that:

v(t) =
1

5
Ce5t − 2

5
t+ C0.

Then we have as required that:

Y (t) = v(t)e−t = −2

5
te−t +

1

5
Ce4t + C0e

−t.

4.5.30 The change of variables t = lnx gives us that:

x
dy

dx
=
dy

dt
, x2

d2y

dx2
=
d2y

dt2
− dy

dt
.
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By denoting now by y′ the t derivative of y (i.e. y′ = dy
dt ) we have that our equation turns into the following

one:

y′′ − 3y′ + 2y = 3e2t + 2t. (5)

The solution for the linear part of (5) is given by:

yl(t) = c1e
t + c2e

2t.

For a general solution of (5) we consider separately the equations:

y′′ − 3y′ + 2y = 3e2t, (6)

and

y′′ − 3y′ + 2y = 2t. (7)

For (6) we look for a special solution of the form Ate2t. Substituting this into (6) we get that A = 3.

For (7) we look for a special solution of the form B1t + B2. Substituting this into (7) we get that B1 = 1,

B2 = 3/2.

By converting back to the x variable, we find that a general solution of (5) is given by:

y(x) = c1x+ c2x
2 + 3x2 lnx+ lnx+

3

2
.

4.7.28 We use as before the change of variables x = ln t (which is permissible by the range of t). Then with

y′ = dy
dx we have the equation:

y′′ − y′ − 2y = 3e2x − 1. (8)

The solution of its linear part is given by:

yl(x) = c1y1(x) + c2y2(x) = c1e
−x + c2e

2x.

From this we can compute the Wronskian:

W [y1, y2](x) = 3ex.

Now we seek a special solution of (8) of the form:

Y (x) = u1(x)y1(x) + u2(x)y2(x).

Using the equation (or directly Theorem 4.7.2, or formulas (25) in page 289 of the textbook) we see that we

have:

u1(x) = −e
2x(3e2x − 1)

3ex
= −1

3
e3x +

1

3
ex,

u2(x) =
e−x(3e2x − 1)

3ex
= x+

1

6
e−2x.

Integrating these two equations we get that Y (t) has the form:

Y (x) = xe2x − 1

3
e2x +

1

2
.

By switching back to the t variable we get that the general solution of (8) has the form:

y(t) = C1
1

t
+ C2t

2 + t2 ln t+
1

2
.
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4.7.39 The equation for v follows by a direct substitution. We let w = v′. We have that w satisfies the following

equation:

w′ + P (t)w = Q(t), (9)

where

P (t) =
2y′1(t) + p(t)y1(t)

y1(t)
and Q(t) =

g(t)

y1(t)
.

We use the method of integrating factors for this 1st order equation and we have that:

w(t) =
1

µ(t)

∫ t

t0

µ(s)Q(s)ds+
C

µ(t)
,

where

µ(t) = exp

(
−
∫ t

t0

P (s)ds

)
.

Letting

F (t) =

∫ t

t0

µ(s)Q(s)ds,

we have that:

v(t) =

∫ t

t0

w(s)ds+ v(t0) =

∫ t

t0

F (s) + C

µ(s)
ds+ v(t0),

which then gives us a general formula for the required y(t) = v(t)y1(t).
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