Tutorial Problems #5

MAT 267 — Advanced Ordinary Differential Equations — Winter 2016
Christopher J. Adkins

] SOLUTIONS

Reduction of Order Via Differential Operators Let D = % be our differential operator. Then any n-th

order linear non-homogeneous equation may be written as

d’n
L(D)[y(z)] = f(x) where L(D)=D"4a, D" '4...+agp (D" = cl;v”)
with a; € R. Factor L into a product of it’s roots (which may be complex and we’ll deal with later), i.e.

L(D)= (D —X)...(D—\n)

Notice this factorization is not possible if a; are functions since the differential operator isn’t commutative
(D1Ds = DoDy). Thus, if we let y, = (D — A,y and y; = (D — \;)y;+1 we effectively reduce the n-th order

equations into n first order equations (which we know how to handle)

pg. 267 - # 28 Solve (using reduction of order)
y//_|_y/ =$2—|-2£C

Solution We see that if L = D? 4+ D, then

L(D)[y(x)] = a* + 22
is the ODE we’re looking to solve. Notice we may use the above method to deduce

L(D)=D(D+1) = v =2 4+2x where (D+1)y=u
The above ODE in u is separable, thus
3
2 x 2
u(x):/ac +2xdx:§+x +Cy CieR

We now know 5
x
y+y=7g+27+0
which is a first order linear ODE, we know this may be solved using an integrating factor. We know

1

y(z) = e /,u(;v)g(x)dx where p(z) = exp (/ d;v) ="
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Thus the general solution to the ODE is

3 3
y(gj)_ex/ez<x3+$2+Cl>d1‘—g+026x+01 e R

O

The Inverse of a Differential Operator Let’s talk about D~! now. Formally we need an operator with
the property if Dz = g, then x = D~ 'y. Intuitively, you should think the integral operator is a natural left

inverse for D since J
7 [ f@yis = @

by the fundamental theorem of calculus. Now what about factors of (D — A) we had...using a formal series

expansion(notably a geometric series), we may algebraically write

(D—-X\)""=

1 1 D D? D3
- 1+7
A1 —D/)) A

- + R
A A2 A3
Convergence of this series is a slight issue at the moment...but for any solution that terminates after a finite

number of derivatives we know convergence is guaranteed. Let’s revisit the example we just saw.

pg. 267 - # 28 Solve (using Inverse Operators)
y//_,_y/ :x2—|—2m
Solution As we saw before we have

DD+ 1)y =242 = y,(z) = (z% 4 2x)

D(D+1)

Notice we’ll only be able to pick up the particular solution to the ODE with this method (not the general) since

L is not injective in general(i.e. L[ypom] = 0). Expanding the inverse into formal series shows

yp(x):%(l—&—D—i—DQ)(a?Q—i—%c): [;—1+D} (22 + 2z)

Thus

3

yp(x) = /(x2 + 2x)dx — (2* 4 2x) + di(mQ +2z) = % +2
T

You may recover the general solution using your knowledge of homogeneous equation, but seeing the eigenvalues

of A =0 and A = —1, thus 1 and e™" solve the homogeneous problem. O

A Special Case, (D —\)~! Applied To ¢*® Notice in the case of exponential, we may factor out e%® in the

formal expansion since

dn axr n _axr
pE =a"e
Thus
1 - eam a Cl2 eam
5 S W LD CAE I
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where we side-stepped the notion of convergence once again, but clearly this is an inverse since

1 eaw

(Dm<D_Awﬁ(DMa_A&w

Since this will work with any a € C and the inverse raised to integer powers, we’ve therefore found a way to

handle exponentials. The only issue that may occur is if @ = A since the expansion isn’t defined (in other words,

a is an eigenvalue). This can easily be fixed using the exponential shift theorem,
L(D)[e**y] = e*L(D + a)ly]

when L(z) is a polynomial (the proof goes by induction, and also applies to the inverse). Thus if A is a root of
L,ie. L(D)= (D — \Fg(D) and g()\) # 0, we see that

k
1 Az Az 1 Az L

DV ~C Dy ¢ Hg

Note there is a similar version from the Laplace Transform which is defined as

which is another useful tool for solving ODE’s. It takes the form L[e f(t)] = L[f(t — a)].

pg. 282 - # 32 Solve

"

y" +y' =cosx

Solution Well, in terms of D we have that
D(D —i)(D+1i)y =cosx

Now since we’ve just dealt with exponentials so far, note e’ = cosx + isinz, so lets solve
D(D —i)(D + i)y = e™*

and take the real part. Letting g(D) = D(D + i) like the above, we see

1 iz iz T iz T rcosx .xrsinx
T)=——F——€e" =" —5=—€e""— = — —1
) =0 4) - T2 2 T
Since we just want the real part of the solution, we see the particular solution to the ODE is
TCOST
Yp(z) = — 5

Noting that the eigenvalues of the equation are A = 0, +4, we have that

I COST

y(x) = Cy + Cycosx + Czsinx —

is the general solution. O

Partial Fraction Decomposition with Differential Operators As you’ve probably seen before with
polynomials, you may decompose

1 o C1 + Co
(D+A)D+X) D+X D+X

Let’s see how this would apply to the previous example.
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pg. 282 - # 32  Solve (using partial fractions)

"

y" +4y =cosx

Solution Using what we saw before, let’s try to decompose into pieces:

1 cfl—i- Co n ()
D(D —i)(D +1) D D-i D+

This implies we need

c1+ca+c3=0 1 1
(D—i)(D+i)ecr + D(D+i)ca+D(D —id)es =1 = co—c3=0 = =-506="3
61:1

Thus

Now if we apply this to e®, we see

1 . e ze :
¢ _ - vt O = "eiv _ C
DO-nD+° i 2 @ YT Ee 3 *

If we take the real part of this solution we see the following particular solution

3 . TCOST
yp(z) = —sinx —

1 2+C

Quiz Find a partial solution using any inverse operator method for
y// + 3y/ + 2y _ 2(67293 + 1’2)
Solution We see that
L(D)=(D+2)(D+1)

Thus we want to solve

1
r) = ————— (272" 4 222
R )
For the exponential, we may use what we’ve previous talked about to find that we have L = (D +2)g(D), hence
2ze 2" o
Ypo () = = —2zxe
For the polynomial, we have that
1 1 D D? 1 3D 7D?
= %?=_(1-Z 4+ ) (1-D+D¥)2?==(1-22 4 )22
@) = By E 2< 2+4)( + D7) 20 2< 2+4>x
Thus we see 5
Yp, (z) = 2> — 32 + 3
So
7
yp(2) = =202 + 2% — 3z + 3
is a particular solution. O



