
Tutorial Problems #4

MAT 267 – Advanced Ordinary Di↵erential Equations – Winter 2016

Christopher J. Adkins

Solutions

n-th Order Linear Di↵erential Equations with Constant Coe�cients Always try e

�x as a solution to

a
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(n�1) + . . .+ a0y
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Thus e�x is a solution if (since the exponential is never zero)

P (�) = a

n

�

n + a

n�1�
n�1

. . .+ a0 = 0

i.e. � is a root of P (�), which is called the characteristic polynomial. By the fundamental theorem of algebra,

we know that we’ll always find n roots over the complex numbers. Thus we’ve found n solutions to the ODE

Why Is It Called The Characteristic Equation? Recall from last time, we saw

ay

00 + by

0 + cy = 0 () .

x =
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Notice that the characteristic equation, the one that determines the eigenvalues, is the same as the previous

polynomial,

P (�) = det(A� 1�) = �

2 +
b

a

�+
c

a

= 0 =) a�

2 + b�+ c = 0

Repeated Roots On can check that you have repeated roots from your characteristic equation. To form a

full basis for your solution space, i.e. the fundamental solutions, you can just stick t in front of the exponential

for every solution you’re missing. i.e. if P (�) = (�� a)3, we’d have

y1 = e

at & y2 = te

at & y3 = t

2
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Solution The characteristic polynomial for the ODE is

P (�) = �

2 � 2a�+ a

2 = (�� a)2

i.e. we have a repeated root of � = a. Let’s try y(t) = te

at as a solution,

2a (eat + a

2
te

at)| {z }
y

00

�2a (eat + ate

at)| {z }
y

0

+a

2 (teat)| {z }
y

= 0

Thus the general solution is given by

y(t) = c1e
at + c2te

at

Example Solve the IVP

3y000 + 5y00 + y

0 � y = 0, y(0) = 0, y0(0) = 1, y00(0) = �1

Solution The characteristic equation for the ODE is

P (�) = 3�3 + 5�2 + �� 1 = (�+ 1)2(3�� 1) = 0 =) � =
1

3
& � = �1( Repeated)

Thus general solution is given by

y(t) = c1e
�t + c2te

�t + c3e
t/3

The initial data implies
8
>><

>>:

c1 + c3 = 0

�c1 + c2 + c3/3 = 1

c1 + 2c2 + c3/9 = �1

=) c1 = � 9

16
, c2 =

1

4
, c3 =

9

16

Hence the solution to the IVP is

y(t) =
9

16
e

t/3 +

✓
t

4
� 9

16

◆
e

�t

Complex Eigenvalues In the case of complex eigenvalues, it seems we have a complex valued solution...though

using Euler’s Identity

e

i✓ = cos ✓ + i sin ✓

we may rewrite the solution in terms of real valued functions. Let �+ = a+ bi and �� = a� bi, then

y(t) = Ce

�+t + C̄e

��t =e

at(Ce

ibt + C̄e

�ibt)

=e

at((C + C̄) cos(bt) + i(C � C̄) sin(bt)

=e

at(c1 cos(bt) + c2 sin(bt))
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Euler Equations Consider

ax

2
y

00 + bxy

0 + cy = 0 x > 0

At first glance it seems like a foreign equation, but let’s apply the change of variables x ! z = ln(x) to the

ODE. We see via chain rule that
dy

dx

=
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dz

dz

dx
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Thus, the ODE in z becomes

a

d

2
y

dz

2
+ (b� a)

dy

dz

+ cy = 0

i.e. an ODE with constant coe�cients. We know the solutions take exponential form...or in terms of the variable

x we have

e

�z = e

� ln(x) = e

ln(x�) = x

�

Thus we see trying y(x) = x

� will amount to the same ole story.

HW - #1 Consider the equation

y

(n) + p

n�1y
(n�1) + . . .+ p1y

0 + p0y = 0

with p

j

(x) for each j 2 [0, n� 1] continuous on [a, b]. Suppose that y is a solution with infinitely many zeros in

the interval [a1, b1] such that a < a1 < b1 < b. Prove that y ⌘ 0 on (a, b).

Proof By the Bolzano Weierstrass Theorem, we know the infinite sequence of zeros {x
m

}1
m=1 has a converging

subsequence to x0 2 [a1, b1]. By definition of a solution, we require y and it’s derivatives to be continuous on

[a, b]. This leads us to consider the neighbourhood B

�

(x0) = {x : x 2 (x0 � �, x0 + �)} for any � > 0, and check

if y 6= 0 there. This will only happen if y0(x0) 6= 0, but B

�

(x0) has infinitely many zero’s of y, so this means

that y0 = 0 on B

�

(x0). Repeating this argument with y

0, and moving up to higher derivatives, we conclude

y(x0) = y

0(x0) = . . . = y

n�1(x0) = 0

Next we’ll show that the trivial solution is the only solution to a null data problem. Define

⇠ =
n�1X

k=0

(y(k))2 > 0

Then the derivative will give us

⇠

0 = 2
n�1X

k=0

y

(k)
y

(k+1)

Plug the ODE into the above

⇠

0 = yy

0 + . . .+ y

(n�2)
y

(n�1) + y

(n�1)(�p

n�1y
(n�1) � . . . p0y)

Using the Inequality 2ab 6 a

2 + b

2 and the fact that p

j

for each j is continuous (we may bound each above),

we see

⇠

0 6 K⇠
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for some constant K. Gronwall’s Inequality now tells us

⇠(x) 6 ⇠(x0)e
K(x�x0) = 0, x > x0

A similar bound is found for ⇠0 > �K⇠ (use 2ab > �a

2 � b

2) to conclude that ⇠ = 0 for x < x0, together these

imply that y ⌘ 0 on [a, b].

Quiz Suppose that vector functions y

1(x), . . . , yn(x) taking values in Rn are linearly independent on the

interval [a, b], and all their coordinates are di↵erentiable on [a, b]. Show that there exists a matrix function

A(x) = (a
ij

(x))16i,j6n

such that y1(x), . . . , yn(x) are solution of the system y

0 = Ay on [a, b].

Solution Define the matrix X to have columns y
j

:

X(x) = (y1, . . . , yn)

Then we’d like this matrix to solve

X

0 = AX

So we now have an equation for the A(x) we’d like to construct, we simply set

X

0(x)X�1(x) = A(x)

Note the inverse is well defined since all vectors are linearly independent. This is such an A.
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