Tutorial Problems #3

MAT 267 — Advanced Ordinary Differential Equations — Spring 2016
Christopher J. Adkins

] SOLUTIONS

pg.109 - # 2 - Petrov Solve

Ty =21 — Yo
Yy =2y1 — Yo

(a) Show if zy # 0, the solution exists and is unique on the real axis and if 29 = 0, the solution exists only if

211 —y2 = 0 and is not unique.

(b) Show the Wronskian of the linearity independent solutions is Cx with C' # 0,
Solution We'll first solve the system. Notice that
ryy =Yy => Yy =y, when z#0
Thus y; = y2 + C1 with some constant C; € R. Using this, we see the system reduces to
=2y - —Ci=y —C1

This equation is separable, thus

d d
y1 — C1 T

Now that we have y; it’s easy to see that
yo = 2C1 + Cox

You may write this in vector notation as

1 1
y(z) = Cly(l) + Czy(Q) =] <2> + Cox <1>

We compute the Wronskian by definition:

1 =«
2

W(x) = det(yMy®) = =Cz where C#0

Notice that xy # 0 implies the Wronskian is non-zero as long as x remains on x(’s side of zero, hence the two

solutions we found are linearly independent and unique. If x5 = 0, then W (x) = 0 since it is either always
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non-zero or zero, we know the solutions cannot be linearly independent, i.e. y; = ays with some a € R. But

this means that we need zy] = zy, = axy; which implies that 2y; — yo = 0 for all z. So

y1=C & y,=2C where C€R

n-th order ODE’s as first order systems Notice that we have

0o 1 0 0 y
0o 0 1 0 Y
Y+ puy" T ey P =0 = a= | : S : x  where =z =
0o 0 ... 1 :
—Po —P1 .- ... —Pn-1 y(n—l)

HW-1 Give an example of an equation y’ = f(z,y) with continuous f on R? and a sequence of Euler Curves
Ye, () with e — 0, defined on some interval [xg — d, 29 + d] passing through a point (zg,yo), such that the

sequence ¥, (x) does not converge on [zg — 0, g + 0]

Solution Consider 3’ = +/|y|, it is clearly condition on R2. Then take the sequence of alternating max and

min of f(x,y) built around the point (z,0) for any g > 0. As we’ve seen the minimizing limit inferior gives
y(z) =0
in the limit, but the upper limit is given by

Lo —20)2 2>
y() :{ !
0 T < xq

Thus

lims — lim inf =0%/4
r6[1£%§0+5]| 1N SUP Ye,, 1m 1. y€k| /

HW-2 Suppose that a function f(z,y) satisfies the condition of Osgood’s theorem,

|f (2, 91) — f(z,92)] < o(ly1 — val)

on the domain D which is convex, and suppose that ¢©(0) = 0 and ¢’(0) = 0. Prove that f doesn’t depend on y.

Solution By the Mean Value Theorem (have a convex domain), we have

) — Flar)] = \ggwx» 1 — 9l < (1 — )

Then we have that by taking the limit as y1 — y2 =y

of ooy —wel) . e(h) —9(0)
- < 1 T 22— lim ——2L =¢'(0) =0
dy (@ y(@)) yll—Ig/Z ly1 — 2 0 h #'(0)
which implies that f doesn’t depend on y. O



Tutorial #3 — Fall 2016 MAT 267

Picard Iterations for first order systems Suppose that
p = F(t,z(t
T=Ft2®) cpr pla):Rx CRP - R
LE(tQ) = Xo

Then we still have the fundamental theorem of calculus element wise to conclude Picard iterations of the form
t
do=x0 & pi1 =m0 —|—/ F(s,x(s))ds
to

where the integral is element wise. Thus the previous existence and uniqueness proof follows if F(¢,x) has

Lipschitz functions.

Pg.726 - # 9 Find the first few Picard iterates for

dr 2@7

n dz
xr Z,—
T dt

Solution Note that we may rewrite the above as

0 0 0 y? 1
z=11 0 1|lz+]|0 z(0)= |0
0 -1 1 0 1

Using the above formula for Picard iterations we see

1
¢o=x0=10
1
: 1 . 0 1
(/)1:x0+/ F(s,p)ds= |0 +/ 2| ds= 2t
’ 1) ° 1 141
2 3
. 1  4s 1+463/3
¢2:x0+/ F(s,¢1)ds= 10 +/ 245 |ds=|2t+1%/2
° 1 1o t—1t%/2

O

A Helpful Formula to Remember Liouville’s Formula. Let X be the fundamental solution to X = AX
with X (z¢) = Xo, then you have

x

det X (x) = det Xg exp </x tr(A(s))ds)

0
Abel’s Formula for the Wronskian of n-th order ODE is now an easy corollary. If y1,...,y, solve

v + oy 44y @ =0

The Wronskian for the solutions is given by

Wiyi, ..., yn)(z) = Cexp (/pn_l(a:)d:c>
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Quiz Prove that if ¢(0) = 0 and ¢'(0) exists (and ¢(z) > 0), then

€
d
o for any €>0

0 ¢(u)

Solution Since ¢/(0) exists, fix ¢ > 0, then for some § > 0, z € (0,d) implies

’(bf) - ¢'(0)’ < = 0<d(x) <z(¢'(0)+€)=cx
Thus we have
T b
cr  ¢(x)
This implies that
o [T [ de C du
o cx  Jo ox) 0 (u)
O
Alternate Solution Since ¢/(0) exists, we see that
vy e @) —8(0) (k)
R
Thus we have that ¢ has leading order
o) =cx" ;nz=1 ceR\{0}
around 0. Thus
2" <z Vnée[l,oo) when z€[0,1) = ¢(x) <axr aecR\{0},z€][0,9)
for some 0 < 1. By limit comparison we know
L
z  ox)
s0
/€ dx /E du
— =00 = —— =
o T 0o o(u)
O



