
Tutorial Problems #2
MAT 267 – Advanced Ordinary Differential Equations – Fall 2014

Christopher J. Adkins

Solutions

pg.90 - # 7 Solve

(x4y2 − y)dx+ (x2y4 − x)dy = 0

Solution Notice the symmetry, so lets check if the equation is exact. Let M = x4y2 − y and N = x2y4 − x,

then

My = 2x4y − 1 & Nx = 2xy4 − 1

i.e. it’s not exact, but we see

Nx −My = 2xy(y3 − x3) & xM − yN = −x2y2(y3 − x3)

In a previous exercise we saw that

µ(xy) = exp

(∫
Nx −My

xM − yN
d(xy)

)
= exp

(
−2

∫
d(xy)

xy

)
= exp−2 ln |xy| = 1

x2y2

works as an integrating factor provide the function Nx−My/xM −yN depended on xy, which in our case does!

Thus the ODE becomes (
x2 − 1

x2y

)
︸ ︷︷ ︸

=M̃

dx+

(
y2 − 1

xy2

)
︸ ︷︷ ︸

=Ñ

dy = 0

after multiplying by our integrating factor. It’s easily seen that the ODE is now exact, so we integrate the

components as usual.

F (x, y) =

∫
M̃dx⊕

∫
Ñdy

=

∫ (
x2 − 1

x2y

)
dx⊕

∫ (
y2 − 1

xy2

)
dy

=
x3

3
+

1

xy
⊕ y3

3
+

1

xy

=
x3 + y3

3
+

1

xy

Thus the general solution is

x3 + y3

3
+

1

xy
= C
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pg.90 - # 9 Solve (
arctan(xy) +

xy − 2xy2

1 + x2y2

)
︸ ︷︷ ︸

M

dx+
x2 − 2x2y

1 + x2y2︸ ︷︷ ︸
N

dy = 0

Solution We check if the equation is exact.

My =
2x− 4xy

1 + x2y2
− 2x3y2 − 4x3y3

(1 + x2y2)2
= Nx

Since the equation is exact, we may integrate the components and take the linearity independent parts.

F (x, y) =

∫
Mdx⊕

∫
Ndy

=x arctan(xy)− log(x2y2 + 1)⊕ x arctan(xy)− log(x2y2 + 1)

=x arctan(xy)− log(x2y2 + 1)

Thus the general solution is

x arctan(xy)− log(x2y2 + 1) = C

pg.103 - # 5 Solve

y′ sin y + sinx cos y = sinx

Solution Notice if z = cos y, then z′ = −y′ sin y. Thus we’re able to rewrite the ODE as

z′− sinx︸ ︷︷ ︸
=p

z = − sinx︸ ︷︷ ︸
=g

In this form the ODE is first order linear. We know the solution is given by

z(x) =
1

µ(x)

∫
g(x)µ(x)dx where µ(x) = exp

(∫
p(x)dx

)
= exp

(
−
∫

sinxdx

)
= exp(cosx)

Thus

z(x) = e− cos x

∫
− sinxecos xdx = e− cos x(ecos x + C) = 1 + Ce− cos x

In terms of the original function, we have

cos(y) = 1 + Ce− cos x =⇒ y(x) = arccos(1 + Ce− cos x)

Riccati Equation Consider the ODE

y′ = f(x) + g(x)y + h(x)y2, h(x) 6= 0

If y1 is a particular solution of this equation, show that the substitution

y = y1 +
1

u
, y′ = y′1 −

1

u2
u′

will transform the equation into the first order linear

u′ + (g + 2hy1)u = −h
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Solution Using the change of variables suggested, we see

y′ = f(x) + g(x)y + h(x)y2 =⇒ y′1 −
1

u2
u′ = f(x) + g(x)

(
y1 +

1

u

)
+ h(x)

(
y1 +

1

u

)2

=⇒ u2y′1 − u′ = u2(f(x) + g(x)y1 + h(x)y21) + ug(x) + h(x) + 2y1h(x)u

=⇒ − u′ = (g(x) + 2hy1)u+ h

pg.98 - 28 Solve

y′ =
1

x2
− y

x
− y2, y1(x) =

1

x

Solution This is an Riccati Equation, so we may use the suggested change of variables

y = y1 +
1

u

We see that f(x) = 1
x2 , g(x) = − 1

x and h(x) = −1, thus the resulting equation will be

u′ + (g + 2hy1)u = −h =⇒ u′ +
3

x
u = 1

Now the equation is first order linear, we see a nice integrating factor of 1/x3 will do the job. Thus

u(x) = x3
∫

1

x3
dx =

−x+ Cx3

2
+ =⇒ y(x) =

1

x
+

2

−x+ Cx3

Infinitely Many Solutions Suppose the domain D is a strip [a, b] × R, and let f(x, y) be continuous and

bounded on D. It is possible that more than one integral curve of the equation dy
dx = f(x, y) passes through

a given point (x0, y0) inside the strip, a < x0 < b. Prove that there are two integral curves y = ϕ1(x) and

y = ϕ2(x) of this equation, the maximum and minimum solutions such that:

• ϕ1(x0) = ϕ2(x0) = y0 & ϕ2(x) 6 ϕ1(x) ∀x ∈ [a, b]

• The entire part of the strip between ϕ2(x) and ϕ1(x) can be completely filled by integral curves passing

through (x0, y0).

• There are no integral curves passing through (x0, y0) which lie outside of this part of the strip.

Solution Here’s a sketch. We’ll construct both the max and min solution using approximation lines. We

know by the fundamental theorem of calculus that

y′ = f(x, y) y(x0) = y0 ⇐⇒ y(x) = y0 +

∫ x

x0

f(s, y(s))ds

By Peano’s existence theorem, we know there exists at least 1 integral curve through (x0, y0) since f is continuous

and bounded (gives a uniformly convergent subsequence). Call ymax the largest integral curve and ymin the

smallest. Then we have that

ymax − ymin =

∫ x

x0

[f(s, ymax(s))− f(s, ymin(s))]ds > 0

These may be constructed using an Euler Approximation on the integral to recursively build the max and min

(or use lines and the differential). Any curve in-between may be also created since we may take the any value

between the min and max in the recursion.
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Quiz Solve

(x− sin y)dy + tan ydx = 0, y(1) = π/6

Solution Notice we may write this into a first order linear equation for x:

dx

dy
=

sin y − x
tan y

= cos y − x

tan y
=⇒ x′ +

1

tan y
x = cos y

Thus with integrating factor

µ(y) = exp

[∫
dy

tan y

]
= exp ln sin y = sin y

Then we know

x(y) =
1

µ(y)

∫
µ(y)g(y)dy =

1

sin y

∫
cos y sin ydy =

sin y

2
+

C

sin y
C ∈ R

The initial data implies the constant must be given by

1 = x(π/6) =
1

4
+ 2C =⇒ C =

3

8
=⇒ x(y) =

sin y

2
+

3

8 sin y

or

8x sin y = 4 sin2 y + 3
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