
Tutorial Problems #9
MAT 267 – Advanced Ordinary Differential Equations – Fall 2014

Christopher J. Adkins

Solutions

Exercise from Section 24 Draw precisely the behaviour of solutions of

dy

dx
=

3x+ 1

x− 3y

Solution Rewrite this in terms of a matrix system, namely

.
z =

(
1 −3

3 1

)
︸ ︷︷ ︸

=A

z where z(t) =

(
x(t)

y(t)

)

To graph the system, lets solve it! First we find the eigenvalues of A:

P (λ) = det(A− Iλ) =

∣∣∣∣∣1− λ −3

3 1− λ

∣∣∣∣∣ = λ2 − 2λ+ 10

Clearly the roots of the above equation are

λ± = 1± 3i

Next up we have the eigenvectors, these are easily found by looking at the kernel:

ker(A− Iλ) = ker

(
3i −3

3 3i

)
= span

(
i

−1

)
=⇒ ~λ− =

(
−i
1

)

Since the eigenvalues are complex, we immediately have the other by complex conjugation (since A is real)

~λ+ =

(
i

1

)

Thus the solution to the system is

z(t) = C1
~λ+e

λ+t + C2
~λ−e

λ−t = et

(
C̃1

(
cos(3t)

sin(3t)

)
+ C̃2

(
− sin(3t)

cos(3t)

))

Hence, we obviously have that the phase portrait corresponding to this system is
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Exercise from Section 25 Construct a system of the type

dx

dt
= x(a+ bx+ cy)

dy

dt
= y(d+ ex+ fy)

such that (1, 1) is a critical point and its linearization is a node of type II (i.e. an improper node). Note this is

the general form for the competitive Lotka-Volterra equations. The region of importance is x, y > 0.

Solution We require (1, 1) to be a critical point (i.e.
.
z = 0 when z0 = (1, 1)). Therefore we like to find

constants such that the linear transform z̃ = z − z0, linearizes the system. i.e.

0 =

(
a+ b+ c

d+ f + e

)
Clearly we need

a+ b+ c = 0 & d+ e+ f = 0

for (1, 1) to be a critical point. Now that we have that out of the way, we’ll fix the requirement of the system

falling into an improper node (Type II). Perform the change of variables:

dx

dt
= x(a+ bx+ cy)→ dx̃

dt
= (x̃+ 1)(a+ b(x̃+ 1) + c(ỹ + 1)) = a+ b+ c︸ ︷︷ ︸

=0

+ (a+ 2b+ c)x+ cy︸ ︷︷ ︸
linear

+ bx2 + cxy︸ ︷︷ ︸
nonlinear

dy

dt
= y(d+ ex+ fy)→ dỹ

dt
= (ỹ + 1)(d+ e(x̃+ 1) + f(ỹ + 1)) = d+ e+ f︸ ︷︷ ︸

=0

+ ex+ (d+ 2f + e)y︸ ︷︷ ︸
linear

+ fy2 + exy︸ ︷︷ ︸
nonlinear

In terms of matrices, the linearized system given by

.
z̃ =

(
a+ 2b+ c c

e d+ 2f + e

)
z̃ =

(
b c

e f

)
z̃
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We need a repeated root in the characteristic equation to have a improper node, plug and chug!

P (λ) = det(A− Iλ) = (b− λ)(f − λ)− ec = λ2 − (f + b)λ+ fb− ec

If we plug this into the quadratic formula we see

λ± =
f + b±

√
(f + b)2 − 4(fb− ec)

2
=
f + b±

√
(f − b)2 + 4ec

2

Thus, we see our third condition here. Namely

(f − b)2 + 4ec = 0

The 3 conditions we derived are sufficient to deduce that the linearized system is an improper node. As an

example, take

a = −4 & d = −2 & e = 0 & b = f = c = 2

i.e. (
x′

y′

)
= −

(
4 0

0 2

)(
x

y

)
+

(
2x2 + 2xy

2y2

)

The phase portrait around (1, 1) looks as follows

Exercise from Section 26 Consider the system

dx

dt
= x(1− x− 2y)

dy

dt
= y(1− 2x− y)

Analyze critical points (0, 0), (0, 1) and (1, 0) in the above.
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Solution Lets start with what the corresponding linearized equations for each critical point. Clearly z0 = (0, 0)

has system

.
z =

(
1 0

0 1

)
z =⇒ node

The critical point z0 = (0, 1) corresponds to x̃ = x and ỹ = y − 1, hence

dx

dt
= x(1− x− 2y)→ dx̃

dt
= x̃(1− x̃− 2(ỹ + 1)) = −x̃− x̃2 − 2x̃ỹ

dy

dt
= y(1− 2x− y)→ dỹ

dt
= (ỹ + 1)(1− 2x̃− (ỹ + 1)) = ỹ(−1− 2x̃− ỹ)− 2x̃

=⇒
.
z̃ = −

(
1 0

2 1

)
z̃ =⇒ improper node

The critical point z0 = (1, 0) corresponds to x̃ = x− 1 and ỹ = y, but by symmetry i.e. x→ y and y → x, we

know that the system is

.
z̃ = −

(
1 2

0 1

)
z̃ =⇒ improper node

This fully characterizes the system. By finding the eigenvectors (generalized eigenvectors) for each of the three

cases, we can easily see the portrait is

Exercise from Section 27 Draw the phase portrait and describe solutions precisely for the system

dx

dt
= x(1− y)

dy

dt
= y ·min(1, x− 1)
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Solution The min function breaks us into two cases. Namely x > 2 and x 6 2 , i.e

dy

dt
= y &

dy

dt
= y(x− 1)

respectively. Clearly the critical points of the system are

z0 = (0, 0) & z0 = (1, 1)

Linearizing about z0 = (0, 0) gives

.
z =

(
1 0

0 −1

)
z =⇒ saddle

clearly the eigenvectors are along the axis lines. we know how to draw this, so lets move on to the second

critical point. Linearizing about z0 = (1, 1) can be done with our change of variables x̃+ 1 = x and ỹ + 1 = y

as previously, we see
.
z̃ =

(
0 −1

1 0

)
z̃

We cannot read the eigenvalues directly off this system, but its clear that the characteristic equation is

P (λ) = λ2 + 1 = (λ− i)(λ+ i) = 0

Thus, the system is centre. Note that we see the rotation is counter clockwise since the top right entry is

negative. Now its easy to draw the system, it’s phase portrait is

Saddle Example Solve the following system, draw direction field and a phase portrait. Describe the be-

haviour of the solutions as t→∞

x′ =
1

4

(
5 3

3 5

)
︸ ︷︷ ︸

A

x
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Solution By now we know the solution is completely characterized by the eigenvalues and eigenvectors of the

above matrix. To make the computation nicer, recall that the eigenvalues of A are 4 times what we actually

want. Now, let’s compute the characteristics equation to find the eigenvalues of A.

P (λ) = det(A− Iλ) =

∣∣∣∣∣5− λ 3

3 5− λ

∣∣∣∣∣ = (λ− 8)(λ− 2) = 0 =⇒ λ1 = 8 &λ2 = 2

Now that we’ve found the eigenvalues, we must find the eigenvectors! They are easily computed by looking at

the kernel of the map evaluated at the eigenvalues

ker(A− Iλ1) = ker

(
−3 3

3 −3

)
= span

(
1

1

)
=⇒ ~λ1 =

(
1

1

)

ker(A− Iλ2) = ker

(
3 3

3 3

)
= span

(
1

1

)
=⇒ ~λ1 =

(
1

1

)
Since eigenvectors are invariant under scaling, we therefore have that actual eigenvalues and eigenvectors are

λ1 = 2 & ~λ1 =

(
1

1

)
& λ2 =

1

2
& ~λ2 =

(
1

−1

)
Thus the solution is

x(t) = C1

(
1

1

)
e2t + C2

(
1

−1

)
et/2

where C1, C2 ∈ R. The system looks like

Example of drawing Consider x′ = Ax. If given the eigenvectors and eigenvalues:

(a) Sketch a phase portrait of the system.

(b) Sketch the trajectory passing through the initial point (2,3)

# 1

λ1 = −1 ~λ2 =

(
−1

2

)
& λ2 = −2 ~λ2 =

(
1

2

)
=⇒ x(t) = C1

(
−1

2

)
e−t + C2

(
1

2

)
e−2t

with a portrait like
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# 2

λ1 = 1 ~λ2 =

(
−1

2

)
& λ2 = −2 ~λ2 =

(
1

2

)
=⇒ x(t) = C1

(
−1

2

)
et + C2

(
1

2

)
e−2t

with a portrait like

# 3

λ1 = −1 ~λ2 =

(
−1

2

)
& λ2 = 2 ~λ2 =

(
1

2

)
=⇒ x(t) = C1

(
−1

2

)
e−t + C2

(
1

2

)
e2t

with a portrait like
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# 4

λ1 = 1 ~λ2 =

(
−1

2

)
& λ2 = 2 ~λ2 =

(
1

2

)
=⇒ x(t) = C1

(
−1

2

)
et + C2

(
1

2

)
e2t

with a portrait like

Quiz Question Consider the system
dx

dt
= x(1− 2x− y)

dy

dt
= y(1− x− 2y)

Draw the phase portrait and analyze the critical point (1/3, 1/3).

Solution Let’s linearize around the critical point. Clearly the Jacobian is given by

∂x′i
∂xj

=

(
1− 4x− y −x
−y 1− x− 4y

)
Thus the linearized system around (1/3, 1/3) is given by

.
z = −1

3

(
2 1

1 2

)
z
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The constant doesn’t affect the type of eigenvalues, only their values. So we compute

P (λ) =

∣∣∣∣∣2− λ 1

1 2− λ

∣∣∣∣∣ = (2− λ)2 − 1 = λ2 − 4λ+ 1 =⇒ λ± = 2±
√

3

Hence this critical point is a stable node locally (don’t forget the minus out front). To draw it, let’s find the

eigenvectors. We see

λ+ =⇒ ker

(
−
√

3 1

1 −
√

3

)
= span

(
1
√

3

)
=⇒ ~λ+ =

(
1
√

3

)

λ− =⇒ ker

(√
3 1

1
√

3

)
= span

(
1

−
√

3

)
=⇒ ~λ+ =

(
1

−
√

3

)
Since λ+ dominates for large t, we have that
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