
Tutorial Problems #8

MAT 267 – Advanced Ordinary Di↵erential Equations – Fall 2014

Christopher J. Adkins

Solutions

Gaussian Elimination Not much to say here, basically you may use gaussian elimination to simplify systems

of equations...

pg.421 - # 7 Solve

dx

dt

= 3x+ 2e

3t
&

dx

dt

+

dy

dt

� 3y = sin 2t

Solution Let’s use elimination (you could solve x, first order linear, then solve the y equation). Rewrite the

system in easy notation.

(D � 3)x = 2e

3t
[1] & Dx+ (D � 3)y = sin 2t [2]

Notice that

(D � 3)[2]�D[1] =) (D � 3)

2
y = (D � 3) sin 2t+ 6e

3t
= 2 cos(2t)� 3 sin(2t) + 6e

3t
[2

⇤
]

Now that both equations have been uncoupled, we solve using the techniques we know. By the method of

undetermined coe�cients, we know that

x(t) = (At+ c1)e
3t

will solve [1], we just need to find the A 2 R that works. We see

e

3t
(3(At+ c1) +A� 3At� 3c1) = Ae

3t
= 2e

3t
=) A = 2

Now we solve [2

⇤
], using the same method we know

y(t) = (c2t+ c3)e
3t
+At

2
e

3t
+B cos(2t) + C sin(2t)

will solve [2

⇤
], the coe�cients turn out to be

A = 3 & B = �1

6

& C = �1

4

It seems we’ve added an extra constant to the expression, but it can easily be solved using the homogeneous

part of [2]. i.e.

x

0
+ y

0 � y = e

3t
(3c1 + 3c3 � c3) = 0 =) c3 = �3c1

2

1
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pg.421 - # 22 Solve 8
>><

>>:

(D � 1)x + 0 + 0 = 0

�x + (D � 3)y + 0 = 0

�x + y + (D � 2)z = 0

Solution Notice that we see that x(t) = c1e
t
from [1]. Next we see that

(D � 1)[2]� [1] =) (D � 3)(D � 1)y = 0 [⇤] =) y = c2e
3t
+ c3e

t

Lastly,

[3]� [2] =) (D + 2)y + (D � 2)z = 0 [#]

(D � 3)(D � 1)[#]� [⇤] =) (D � 3)(D � 1)(D � 2)z = 0 =) z = c4e
t
+ c5e

2t
+ c6e

3t

Now let’s peg down the constants. By equation [2], we see

(D � 3)y � x = 0 =) (c3 � 3c3 � c1)e
t
= 0 =) c3 = �c1

2

By equation [3] we see

(D � 2)z + y � x = 0 =) (c4 � 2c4 �
c1

2

+ c1)e
t
+ (c6 � 2c6 � c2)e

3t
= 0 =) c4 = �3c1

2

& c6 = �c2

Thus the general solution to the system is

x(t) = c1e
t
, y(t) = c2e

3t � c1

2

e

t
, z(t) = �3c1

2

e

t � c2e
3t
+ c5e

2t
c1, c2, c5 2 R

2⇥2 Phase Portraits i.e. Drawing a Picture of Possible Solutions to a System. As we saw last time,

a very convenient way to classify a system is via the eigenvalues of the associated matrix. The terminology is

sgn(�+) = sgn(��) & �+ 6= �� =) node,

(
�+,�� > 0 =) unstable

�+,�� < 0 =) asymptotically stable

�+ = �� =) improper node,

(
�+,�� > 0 =) unstable

�+,�� < 0 =) asymptotically stable

sgn(�+) 6= sgn(��) =) saddle, always unstable

�± 2 C & �+ 6= ���(i.e. non-zero real part) =) spiral

(
�+ + �� > 0 =) unstable

�+ + �� < 0 =) asymptotically stable

�± 2 C & �+ = ���(i.e. complex valued, with zero real part) =) centre, always stable

Just as we saw the eigenvectors were important for solving the system, they make drawing the system very

simple.
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Exercise from Class Notes Draw the phase portrait for

.
x =

 
5 2

�1 3

!
x

Solution First let’s find the eigenvalues. We see via the characteristic equation that

P (�) = det(A� 1�) =

�����
5� � 2

�1 3� �

����� = (5� �)(3� �) + 2 = �

2 � 8�+ 17 = 0 =) �± = 4± i

Thus the system is an unstable spiral. We see that the top right entry of the matrix A is 2, which is positive

so the system spins clockwise. Thus we see have that

Exercise from Class Notes Draw the phase portrait for

dy

dx

=

x� 3y

3x� 9y

Solution Notice that this is the same as the

.
x =

 
1 �3

3 �9

!
x

And the eigenvalues of the matrix are given by

P (�) =

�����
1� � �3

3 �9� �

����� = �

2
+ 8� =) � = 0,�8

This is a degenerate type of solution, transitioning between a saddle and a node. Regardless, the same procedure

applies. Let’s find the eigenvalues. We see

� = �8 =) ker

 
9 �3

3 �1

!
= span

 
1

3

!
=) ~

��8 =

 
1

3

!

is the eigenvector for � = �8, then

� = 0 =) ker

 
1 �3

3 �9

!
= span

 
3

1

!
=) ~

�0 =

 
3

1

!

Thus we see the phase portrait is given by
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