Tutorial Problems #8

MAT 267 — Advanced Ordinary Differential Equations — Fall 2014
Christopher J. Adkins

] SOLUTIONS

Gaussian Elimination Not much to say here, basically you may use gaussian elimination to simplify systems

of equations...

pg.421 - # 7 Solve

dx dr dy
—_— = 2 3t —_— —_— = S| 2
7 3r 42t & 7 + 7t 3y = sin 2t

Solution Let’s use elimination (you could solve z, first order linear, then solve the y equation). Rewrite the

system in easy notation.
(D—3)x=2¢* [1] & Dx+(D-3)y=sin2t [2]
Notice that
(D —3)[2] = D[1] = (D —3)*y = (D — 3)sin2t + 6> = 2cos(2t) — 3sin(2t) + 6> [2*]

Now that both equations have been uncoupled, we solve using the techniques we know. By the method of

undetermined coefficients, we know that
z(t) = (At + ¢1)e™

will solve [1], we just need to find the A € R that works. We see
S (3(At +c1) + A—3At —3c1) = Ae¥ =2e3" — A =2
Now we solve [2*], using the same method we know
y(t) = (cot + c3)e® + At?e® 4 Bcos(2t) 4 C'sin(2t)
will solve [2*], the coefficients turn out to be

A= B—=__ __:
3 & 6&04

It seems we’ve added an extra constant to the expression, but it can easily be solved using the homogeneous

part of [2]. i.e.
3t 3¢
—y=e€ (301+303703):0:>03:—2
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pg.421 - # 22 Solve

(D—-1z + 0 + 0 =
-z + (D-3)y + 0 =
—x + Yy + (D-2)z =

Solution Notice that we see that z(t) = cie! from [1]. Next we see that
(D-1D[2]-[1] = (D-3)(D-1y=0 [] = y=coe® +c3e'

Lastly,
Bl -2 = (D+2y+(D—-2)2=0 [#]
(D=3)(D—-1)[#]—[¥] = (D-3)(D—-1)(D—-2)2=0 = z=cye’ +c5e* + c5e

Now let’s peg down the constants. By equation [2], we see

(D-3)y—2=0 = (c3—3c3—c1)ef =0 = 0327%
By equation [3] we see
(D-2)z4y—2=0 = (0472647%+Cl)€t+(667266762)63t =0 = ¢4 :—3% & cg=—co
Thus the general solution to the system is
z(t) = cret,  y(t) = cpe3t — %et, z(t) = f?)zﬂet — &3 feze® ¢, c,05 €R

O

2 x 2 Phase Portraits i.e. Drawing a Picture of Possible Solutions to a System. As we saw last time,

a very convenient way to classify a system is via the eigenvalues of the associated matrix. The terminology is

A, A2 >0 = unstable
Ay, A <0 = asymptotically stable

sgn(Ay) =sgn(A_) & Ap # A = node, {

. A, A >0 = unstable
A+ = A_ = improper node, )
A, Ao <0 = asymptotically stable

’sgn()\+) # sgn(A_) = saddle, always unstable

Ap+A_>0 = unstable

A elC & A —A_(i.e. non-zero real part) — spiral
* +7 ( part) P { A+ + A <0 = asymptotically stable

’ A €C & M =—)X_(i.e. complex valued, with zero real part) = centre, always stable

Just as we saw the eigenvectors were important for solving the system, they make drawing the system very

simple.
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Exercise from Class Notes Draw the phase portrait for

. 5 2
T = x
-1 3

Solution First let’s find the eigenvalues. We see via the characteristic equation that

5—2A 2

PO =de(A—1) = """ 7

=B-ANB=AN)+2=X -8\ +17=0 = Ay =4+

Thus the system is an unstable spiral. We see that the top right entry of the matrix A is 2, which is positive

so the system spins clockwise. Thus we see have that

Exercise from Class Notes Draw the phase portrait for

dy =—3y

dr 3z —9y

. 1 -3
T = x
3 -9

And the eigenvalues of the matrix are given by

Solution Notice that this is the same as the

1-A -3

PO="3 5 .

=M 4+8\ = A=0,-8

This is a degenerate type of solution, transitioning between a saddle and a node. Regardless, the same procedure
applies. Let’s find the eigenvalues. We see

9 -3 1 o 1
A=—-8 = ker = span = A_g =
3 -1 3 3

is the eigenvector for A = —8, then

1 -3 3 - 3
A=0 = ker = span = X =
3 -9 1 1

Thus we see the phase portrait is given by
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