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MAT 267 — Advanced Ordinary Differential Equations — Fall 2014
Christopher J. Adkins

] SOLUTIONS

Variation of Parameters Suppose you know y; and ys solve y” + py’ + qy = 0. Is there a way to easily

solve the non-homogeneous equation?
vy 'ty tay=g

Yes!!! Tt turns out that if we try y = A(t)y1 + B(t)y2 ( i.e. vary the parameters) it is a solution if

_ Y29 _ Y19
A(t) = —/W[th]dt & B(t) _/W[yl,yg]dt

This is easily deduced from a straightforward computation assuming A’y; + B’ys = 0.

pPg. 240 - # 5 Solve
y" — 3y + 2y =cose””

Solution First solve the homogenous part. i.e. notice that
L(D)=(D-2)(D-1)
Thus A = 1,2 are the eigenvalues and we have that
yi(z) =e* & yo(z) =€"

are the fundamental solutions. To now solve the non-homogeneous equation, we may use variation of parameters

but we first need the Wronskian

Wy, y2)(z) = y1yh — yiyo = —€**
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Using the formula we see that

e®cose™”
Alx) = | ——dz
e3r
:—/ucosudu where u=e""

= —wusinu — cosu + C

=—¢ %sine”* —cose”* + C4

B(x) :/e%cos(e_x)dx

*6330
z/cosuda: where u=e¢7 7"

=sinu + Cy

=sine * + Cq

Thus, we have the general solution as

y(x) = A(x)ys + B(x)ys = C1e** 4 Cae” — e** cose™ ™

O

Variation of Parameters in Higher Order Equations In general, if we have a first order system = =
Az + g. You'll find that the fundamental solution X to X = AX allows us to write the solution as

z(t) = X(t)e+ X(¢) t X1(s)g(s)d(s)
Indeed since

i=Xc+ X tX_l(s)g(s)d(s)+X(X_1g):A<X0+X tX_l(s)g(s)d(s>+g=Ax+g

to tO

X=AX

Notice we easily recover the formula we’ve been using in the 2nd order case since det X = Wy, yo] and

0 1 A 0 1 (-
. ¢ x o yi 2) L xog - v _ 1 [y
g AT Wiyl \yi w1 J \g) W \ wyg

Reduction of Order when a solution is known If you know y; solves vy + py’ + qy = 0, then you may
find yo by setting yo = v(z)y1(x) with a straight forward computation for v(x). A nice way to go about find v

is though the Wronskian, since
Wiy, y2] = Cexp ( /p(x)d:z:)

by Abel’s theorem, and then by definition we have

y? vyl da

Wy, ! / d
Wlyi,y2] = y1vs — y1y2 <= Wiynyal _ w2 _ y2tn _ <zQ>
1

Thus we see

Wy,
Y2 =1 / 7[%2 yQ]de
Y1
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Pg.246 - #16 Solve
2%y’ — 2y =222 given y ==z

Solution In standard form the ODE is

Using the above, we know

w
Y2 = yl/Tdm
Y1

So we compute Wronskian via Abel’s theorem

Wy, y2] = c1 exp (— /p(w)dw> =

Now using the reduction of order formula we see

de 1

_2 [ar 1

(@) =@ ¢
So the second fundamental solution to the ODE is yo = 1/x. Now that we have both solutions, let’s use variation
of parameters to solve the non-homogeneous part. i.e. y(z) = A(z)y1 + B(z)y2. We need to compute the the

explicit Wronskian for our given fundamental solutions. We see

Wiy, y2)(z) = y1ys — y1y2 = —3

/yzgd

3 T

Now we use the variation of parameters formula

logx +c1

/ylgd
—_g/ le'

2 3
ffgz + c2

Putting everything together now shows

y(z) = c12”

2
+ % + ga:Q log(x)

pg. 329 - # 5 Prove conservation of energy for the undamped helical spring (ma” = —kx). i.e.

1 1 d
FE = §kx2 + §mv2 where v = d—i

Solution Suppose that 2’ # 0, then we have

1 d d 1 1
"no_ "1 o / 2:77 2 - 2 T2
ma”’ = —kx = ma'z krx' = 2mdt( x') detx = 5mv + Qkx EeR
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pg. 343 - #5 Solve
d? .
fg + wgy = Fsin(wot) y(0) = yo,v(0) = vy

Solution Clearly the homogeneous part is

Yhom (t) = ¢1 cos(wpt) +ca sin(wot)
——— ———

=Y1 =Y2

Via variation of parameters, we see the solution to the non-homogeneous equation is given by A(t)y1 + B(t)y

where (noting Wiy, yz] = 1)
Alt) = — F/sinz(wot)dt
__r / L= cosQu)

QLUQ
Ft  Fsin(2wot)

- 2(4}0 4(.00
_ Ft  Fsin(wot) cos(wot)

n 2(,00 ZWQ

B(t) :F/cos(wot) sin(wot)dt

F cos?(wot)

2w0

Putting it all together we see

It
y(t) = ¢1 cos(wp)t + ¢o sin(wpt) — S cos(wot)
wo




