Tutorial Problems #2

MAT 267 — Advanced Ordinary Differential Equations — Fall 2014
Christopher J. Adkins

] SOLUTIONS

pPg.90 - # 7 Solve
(z%y? — y)dx + (2%y* — 2)dy =0

Solution Notice the symmetry, so lets check if the equation is exact. Let M = z%y? —y and N = 2%y* — z,

then
My:2x4y—1 & N,=2ay*-1

i.e. it’s not exact, but we see
N, — M, =2zy(y® —2*) & aM —yN = —2?y*(y® — 2?)

In a previous exercise we saw that

N, — M, d 1
p(zy) = exp ( N y;d(wy)) = exp (—2/ (xxyy)) = exp—2Inay| = 22

works as an integrating factor provide the function N, — M, /zM —yN depended on xy, which in our case does!

Thus the ODE becomes . )
(1’2_2>d$+(y2_2)dy:0
ey zry

=M =N
after multiplying by our integrating factor. It’s easily seen that the ODE is now exact, so we integrate the

components as usual.

F(m,y):/de@/Ndy
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pPg.90 - # 9 Solve
xy — 2xy> % — 296 y
—_— ———dy=0
1+ 22y? ) 1+ V=
M N

(arctan(xy) +

Solution We check if the equation is exact.

2z —A4xy 2x3y? — da3y3
VT a2y (1+ 2242)2

— N,
Since the equation is exact, we may integrate the components and take the linearity independent parts.
F(x,y) = /MdeB/Ndy

=z arctan(zy) — log(2%y* + 1) @ z arctan(zy) — log(x?y? + 1)
=gz arctan(zy) — log(zy? + 1)

Thus the general solution is

’xarctan(my) —log(z?y* + 1) = C‘

pg.103 - # 5 Solve

Yy siny + sinxcosy = sinx

Solution Notice if z = cosy, then 2/ = —y'siny. Thus we’re able to rewrite the ODE as

7 —sinxz=—sinz
S~—— S~——

=p =9

In this form the ODE is first order linear. We know the solution is given by

(z) = ﬁ / g(@)u(@)ds  where pu(x) = exp < / p(z)dx) — exp (- / sinxdz) — exp(cos )

Z(.’E) — e*COSI/’_SinmeCOSIde — e*COSI(eCOS(E +C) — 1 +C67COS$

Thus

In terms of the original function, we have

cos(y) =1+ Ce™ % = ’y(az) = arccos(1 4+ Ce™ “*7%)

Picard Iterations Suppose you have a first order IVP. Using the fundamental theorem of calculus we see

{ y=rty) yt) =yo+ | f(s,y(s))ds
y(to) = Yo to

i.e the solution to the ODE is a solution to the integral equation. If we consider the RHS as an operator on our

m=m+Af@mmw

solution
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then existence of a solution to the ODE is equivalent to find a fixed point under this operator. i.e. T[y] =y. To
show there exists some fixed point, lets try to define an approximating sequence that approaches such a point.

Define the sequence as (Picard iterations)

t
o=y & Pr+1 =10 +/ f(s, Pr(s))ds
to

Its easy to show this limit converges if f is continuous (limits check out) and f is Lipschitz ( allows us to bring
the limit in the integral, i.e. lim [ = [lim). Furthermore, one may show that 7' is a contraction map which

allows us to apply the Banach Fixed point theorem to conclude the existence and uniqueness of y.

Pg.726 - # 4 Find the first 3 Picard iterations of

Yy =1+uay
y(1) =2

Solution From the above, we see that tg = 1 and yg = 2, so ¢g = 2..

t t
(;51:2—1—/1 f(s,¢0)ds:2—|—/1(1—|—2$)ds=t2—|-t

t t 4 3
t 5
P2 :2+/ f(87¢1(5))d$:2+/ (I+s(s®+8))ds=—+ — +t+ —
1 1 4 3 12
t t 4 3 6 5 3 2
s ] 5 t t t 5t 7
b3 +/1f(s,¢z(s))s +/1(+s<4+3+s+12>)s it E s tor it o
These are the first 3 Picard iterations. Notice that in practice they’re almost like building up a series expansion
of the solution. O



