
Tutorial #2,#3, & #4

MAT 244 – ODE – Summer 2013

1st Order Equations

1st Order O.D.E In general we write a first order equation in the form of

dy

dt

= f(t, y)

where f is some function of possibly t and y. We have essentially 4 cases that we’ll cover in this corse for 1st

order ODE. We’ll start by covering how to solve them and deal with existence/justification of our work later.

(a) Separable Equations These are definitely the nicest form of 1st order ODE. They take the form

M(t) = N(y)
dy

dt

where M and N are function of the indicated single variable. Suggestively, we may rewrite this in

“di↵erential form” as

M(t)dt = N(y)dy

and integrate with respect to each di↵erential, i.e. we turn the di↵erential equation into an integral

equation.

M(t) = N(y)
dy

dt

()
Z

M(t)dt =

Z
N(y)dy

This forms are equivalent, and the integral formulation allows a nice method to solve the equation explicitly

as long as we can evaluate the integral. Remark: It is sometimes impossible to get y in terms

of just t, i.e. what is y(t)? We may leave the solution as an implicit solution though. Think

x

2 + y

2 = 1 is an implicit solution for a circle, when we rearranging for y obtain y = ±
p
1� x

2 which

loses half the circle.

(b) 1st Order Linear In this case we have a general form of

y

0(t) + p(t)y(t) = g(t)

A method of solving this is to recall product rule from calculus. It looks an awful lot like

d

dt

(µ(t)y(t)) = µ(t)y0(t) + µ

0
y(t)

Suppose we had, the above form, we could make it look like the 1st Order linear general form if

d

dt

(µ(t)y(t)) = µ(t)g(t) () y

0(t) +
µ

0(t)

µ

0(t)
y(t) = g(t)
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So this µ(t), will help us “factor” the ODE if

µ

0(t) = p(t)µ(t)

For this reason, we’ll call µ(t) and integrating factor. We may solve for an explicit formula using the

separable method. Let’s do this

µ

0 = pµ ()
Z

dµ

µ

=

Z
p(t)dt =) ln |µ| =

Z
p(t)dt =) µ(t) = exp

Z
p(t)dt

�

µ(t) will always allow us to factor the ODE. More explicitly we have a formula for y(t) since

d

dt

(µ(t)y(t)) = µ(t)g(t) =) y(t) =
1

µ(t)

Z
µ(t)g(t)dt

This formula completely solves this case. As an aside, notice as long as we can make sense of the formula

we have uniqueness and existence for a solution y.

(c) Exact Equations Suppose that M,N,M

y

, N

t

are continuous in some open box, then

@M

@y

=
@N

@t

=) M(t, y) +N(t, y)y0 = 0 has a solution

Why does this happen? You can think of this as black magic for the moment, or if you have some interest

in mathematics you can look up something called the exterior di↵erential d, and it satisfies

F (x, y) = Const () d(F (x, y) = d(Const) () @F

@x|{z}
M

dx+
@F

@y|{z}
N

dy = 0

We call “functions” of this form exact. Notice that the derivative condition is simply the condition that

the partials match, i.e.

M

y

= N

x

() @

2
F

@x@y

=
@

2
F

@y@x

Thus the solution to the ODE should be the sum of the linearly independent parts of the integral of each

derivative, we denote this special sum as � as you would with vectors as you’ve seen in linear algebra.

F (x, y) =

Z
Mdx�

Z
Ndy =)

Z
Mdx�

Z
Ndy = C where C 2 R

where the boxed formula is a implicit solution to the ODE.

(d) Homogeneous Equations In this context, we actually mean that

M(t, y)dx+N(t, y)dy = 0

with M and N homogeneous. A function is said to be homogeneous of degree n if we have that

f(�t,�y) = �

n

f(t, y) where � 2 R

Notice in this case that the ratio of scaled M and N is fixed. i.e.

M(t, y)

N(t, y)
=

M(�t,�y)

N(�t,�y)

2
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Now if we fix � = 1/t, we see that

M(t, y)

N(t, y)
=

M(1, y/t)

N(1, y/t)
= f(y/t)

This leads us to consider the change of variables y/t = v. We see

M(t, y)dx+N(t, y)dy = 0 () M(t, y)

N(t, y)
+ y

0 = 0 () f(v) + xv

0 + v = 0

We can solve the ODE in v since it is separable, we see the solution takes the form
Z

dv

f(v) + v

=

Z
dt

t

=) ln |t| =
Z

dv

f(v) + v

or, in our original variables we see

ln |t| =
Z

tN(t, y)

tM(t, y) + yN(t, y)
d

⇣
y

t

⌘

Which isn’t very helpful, but it shows that we can always find a solution if the integral makes sense.

Example(Separable) - Find the general solution to

y

2
p
1� x

2
dy = arcsin(x)dx

Notice this is in di↵erential form, it is equivalent to

y

2
p

1� x

2
y

0 = arcsin(x)

To solve it, notice the ODE is separable. Thus

y

2
p
1� x

2
y

0 = arcsin(x) ()
Z

y

2
dy =

Z
arcsin(x)p

1� x

2
dx =) y

3

3
=

arcsin2(x)

2
+ C where C 2 R

The C is just the integration constant. It means that we have a 1-parameter family of solution to the ODE.

(Note: The integral is solved using u-sub with u = arcsin(x).) Thus our solution to the ODE is

y(x) =
3

s
3 arcsin2 x

2
+ C

Example(1st Order Linear) - Solve the IVP

ty

0 + (t+ 1)y = t y(ln(2)) = 1

To use our formula for an integrating factor, we need to rewrite the ODE in standard form. Namely

y

0 +
t+ 1

t

y = 1

Thus our integrating factor is

µ(t) = exp

Z
t+ 1

t

dt

�
= te

t

Using our formula, we see the general solution is

y(t) =
1

te

t

Z
te

t

dt =
1

te

t

(et(t� 1) + C) = 1� 1

t

+
C

te

t

where C 2 R

3
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where we used the integration by parts formula to evaluate the integral. The initial condition (data) states we

want the solution such that y(ln(2)) = 1. This forces our choice of C, namely

y(ln(2)) = 1� 1

ln(2)
+

C

2 ln(2)
= 1 () C = 2

Thus the solution to the initial value problem(IVP) is

y(t) = 1� 1

t

+
2

te

t

Example(1st Order Linear) - Find the general solution to

y

0 +
1

t

y = 3 cos(2t)

We use our integrating factor method, i.e.

µ(t) = exp

Z
p(t)dt

�
= t

Thus via the formula for y(x) we have

y(x) =
1

t

Z
3t cos(2t)dt =

3

4t
(2t sin(2t) + cos(2t) + C) where C 2 R

using integration by parts.

Example(Exact Equation) - Find the general solution to

x

(x2 + y

2)3/2| {z }
=M

+
y

(x2 + y

2)3/2| {z }
=N

y

0 = 0

It’s easy to verify that

M

y

=
�3xy

(x2 + y

2)5/2
= N

x

=) Exact!

Using the formula we derived, we see

F (x, y) =

Z
Mdx�

Z
Ndy =

Z
x

(x2 + y

2)3/2
dx

Z
y

(x2 + y

2)3/2
dy

=� 1

2

 
1p

x

2 + y

2
� 1p

x

2 + y

2

!

=� 1

2
p
x

2 + y

2

Thus the implicit solution to the ODE is (note that we hid the factor in front in the constant)

1p
x

2 + y

2
= C where C 2 R

Exact Integrating Factors Suppose that we have

M(t, y)dt+N(t, y)dy = 0

and the equation if not exact, i.e. M

y

6= N

t

. The goal here is find out what we may multiply the equation by

to try and make it exact. There isn’t exactly (haha) a systematic approach to always finding an integrating

4
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factor (µ(x, y)) to make the equation exact, but we have some special cases. Suppose that µ is a function of y

alone. This means that we want the following ODE to be exact

µ(y)M| {z }
M̃

dt+ µ(y)N| {z }
Ñ

dy = 0

For this to be exact, we need (M̃
y

= Ñ

x

)

@

@y

(µ(y)M) = µ

0
M + µM

y

= µ(y)N
t

=) µ

0(y)

µ(y)
=

N

t

�M

y

M

This equation tells us that this is a integrating factor if (N
t

�M

y

)/M is a function only of y. If we assume this,

we see our integrating factor takes the form

µ(y) = exp

Z
N

t

�M

y

M

dy

�

Similarly, we may repeat the same argument to show µ(t) is an integrating factor if (M
y

�N

t

)/N is a function

only of t. In this case we’d see

µ(x) = exp

Z
M

y

�N

t

N

dt

�

As an exercise, find the condition for µ(xy) to be an integrating factor. Remark! There isn’t always

just one integrating factor, consider 2 sin(y) + x cos(y)y0 = �1, you can check that µ(x) = x or

µ(y) = 1/
p
2 sin(y) + 1 both work.

Example(Exact Integrating Factor) - Find the general solution to

y|{z}
M

+(2x� ye

y)| {z }
N

y

0 = 0

We see the equation is not exact, since

M

y

= 1 & N

x

= 2

But notice that the derivatives are similar (i.e. constants), so maybe we could find an integrating factor. From

the derivative of an exact integrating factor, we see

N

x

�M

y

M

=
1

y

which is just a function of y. Thus

µ(y) = exp

Z
N

x

�M

y

M

dy

�
= y

Let’s check that y makes the new ODE exact, we have

y

2

|{z}
=M̃

+(2xy � y

2
e

y)| {z }
=Ñ

y

0 = 0

Clearly, we have

M̃

y

= 2y = Ñ

x

5
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which means the ODE is exact. Therefore, our solution is a level set of

F (x, y) =

Z
M̃dx�

Z
Ñdy =

Z
y

2
dx�

Z
(2xy � y

2
e

y)dy

=y

2
x� xy

2 � (y2 � 2y + 2)ey

=xy

2 � (y2 � 2y + 2)ey

i.e. the (implicit) general solution is

xy

2 � (y2 � 2y + 2)ey = C where C 2 R

Example(Discontinuous Coe�cients) - Solve the IVP

y

0 + p(t)y = 0, y(0) = 1 where p(t) =

(
2 t 2 [0, 1]

1 t > 1

By definition of a solution, we want it to be continuous, i.e. we’ll have to glue pieces together. We have two

cases, t 2 [0, 1] and t > 1. For t 2 [0, 1] we’re solving

y

0 + 2y = 0 =) y1(t) = C1e
�2t where C1 2 R

The initial data implies that C1 = 1. For t > 1, we have

y

0 + y = 0 =) y2(t) = C2e
�t

The constant here is determine by making the function continuous. We want

lim
t!1+

C2e
�t = y1(1) = e

�2 =) C2 = e

�1

Thus the continuous solution to the IVP is

y(t) =

(
e

�2t
t 2 [0, 1]

e

�(t+1)
t > 1

Notice

Autonomous Equations Basically Autonomous ODE is one that doesn’t depend on t,x, etc. i.e. the

independent variable. Characteristics of systems of this type will be critical points(solutions), or equilibrium.

We call a critical point, a value y0 such that the autonomous system satisfies

y

0 = f(y0) = 0

In situations like this it makes sense to talk about stability of a critical point. Stable critical points are

points such that a perturbation like

y(t0) = y0 ± ✏

will eventually fall back into the y0 state for ✏ > 0 (not too big so it passes through another critical point).

More specifically, this means that

f(y0 + ✏) < 0 & f(y0 � ✏) > 0 =) Stable Critical Point

6
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Unstable critical points are exactly the opposite, i.e.

f(y0 + ✏) > 0 & f(y0 � ✏) < 0 =) Unstable Critical Point

Then we have the mixed case, stable on one side, unstable on the other. These are called Semi-stable critical

points and have the property that

sgn(f(y0 + ✏) = sgn(f(y0 � ✏)) =) Semi-Stable Critical Point

Variation of Parameters Suppose we consider the homogeneous 1st Order linear ODE, namely

y

0(t) + p(t)y(t) = 0

We may find the solution to this via separation of variables, it is

y(t) = C exp


�
Z

p(t)dt

�
where = CI(t) C 2 R

with I(t) = exp
⇥
�
R
p(t)dt

⇤
. Now suppose we consider the non-homogeneous case, with g(t) not identically

zero.

y

0(t) + p(t)y(t) = g(t)

We’ll find the solution by varying the constant on the homogeneous solution, i.e. making C into a function

C(t). Plugging this into the ODE gives us ( note that I 0(t) = �pI(t))

y

0 + py = C

0
I + CI

0 + pCI = C

0
I �pCI + pCI| {z }

=0

= g =) C

0(t) =
g(t)

I(t)

Which means we may find C(t) which solves the equation if we integrate. We see

C(t) =

Z
g(t)

I(t)
dt

Notice that I(t) = 1/µ(t), the inverse of our integrating factor. Which results in the same formula as we deduced

earlier.

y(t) = C(t)I(t) =
1

µ(t)

Z
µ(t)g(t)dt

Euler’s Method(1st Order Taylor Approximation) Recall the definition of slope, i.e. rise over run, and

call y(x
n

) = y

n

. We have
�y

�x

=
y

n+1 � y

n

x

n+1 � x

n

⇡ y

0
n

if x
n+1 � x

n

is small

Define ✏ as our step size between points, i.e. x
n+1 � x

n

= ✏ for all n. Now consider the 1st order ODE

y

0 = f(x, y)

If our ✏ is small enough, it’s not a bad approximation to assume that

y

0
n

=
y

n+1 � y

n

✏

= f(x
n

, y

n

) =) y

n+1 = y

n

+ ✏f(x
n

, y

n

)

which is exactly a taylor expansion up to first order. This gives me a computational method to solve an ODE

in an iterative method (of course assuming you give me y(x0) = y0, i.e. the initial data). This works since we’re

essentially flowing along the direction field created from the ODE for ✏ time. Gluing together all this “slope”

lines approximates the solution (as long as f and @

y

f are continuous [or Lipschitz]).

7
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Example(Convergence of Euler’s Method) Consider the IVP

y

0 = 1� t+ y, y(t0) = y0

Clearly we may solve this using the methods talked about earlier to obtain

y(t) = (y0 � t0)e
t�t0 + t

But let’s see how we’d implement Euler’s Method here. Using the idea above, define a step size ✏ starting from

the initial point t0, i.e. tn = t0 + n✏. We have that

y

n+1 = y

n

+ ✏f(t
n

, y

n

) = y

n

+ ✏(1� t

n

+ y

n

) = (1 + ✏)y
n

+ ✏(1� t

n

)

By using the above formula recursively, we can get everything in terms of the initial data. i.e. prove by induction

that

y

n

= (1 + ✏)n(y0 � t0) + t

n

The base case is immediate, so assume true for n and prove that n+1 holds. We leave this as an exercise. Now

fix t > t0 and take

✏ =
(t� t0)

n

=) t

n

= t

Consider the limit of the solution now as our step size ✏ approaches 0, i.e. n ! 1. We have

lim
n!1

y(t
n

) = lim
n!1

✓
1 +

(t� t0)

n

◆
n

(y0 � t0 + t

n

= (y0 � t0)e
t�t0 + t

using the fact that

lim
n!1

⇣
1 +

a

n

⌘
n

= e

a

this shows that as our steps get finer, we’ll recover the actual solution.

The Picard-Lindelöf Theorem(Existence and Uniqueness) This theorem will give us existence and

uniqueness to the specific 1st order ODE. Suppose that f(t, y(t)) and @yf(t, y(t)) are continuous in a box B

centred around (t0, y0). Then the IVP

y

0 = f(t, y), y(t0) = y0

has a unique solution locally around (t0, y0).

This basically states that we can always find a solution if f(t, y) is nice enough. The idea of the proof is as

follows. Turn the di↵erential equation into an integral equation

Z
t

t0

y

0(s)ds =

Z
t

t0

f(s, y(s))ds =) y(t) = y0 +

Z
t

t0

f(s, y(s))ds

We want to show that the integral equation has a fixed point y, since if it does, that y is a solution to the ODE.

To do this we can define an approximating sequence (these are usual called Picard Iterations)

�0 = y0 & �

n+1(t) = y0 +

Z
t

t0

f(s,�
n

(s))ds

8
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We want to show that this sequence convergences to something(i.e. the solution), so we first show the distance

is shrinking between iteration of this sequence for small enough t. Which is basically done with the following

bound

max
t2B

|�
i+1(t)� �

j+1(t)| = max
t2B

����
Z

t

t0

[f(s,�
i

(s))� f(s,�
j

(s))]ds

���� 6max
t2B

Z
t

t0

|f(s,�
i

(s))� f(s,�
j

(s))|ds

K = max
t2B

@f

@y

=) 6Kmax
t2B

Z
t

t0

|�
i

(s)� �

j

(s)|ds

6Kmax
t2B

(t� t0)|�i

(t)� �

j

(t)|

Then taking B such that K(t� t0) = K̃ < 1 for all t 2 B. This shows that this a contraction map, which is a

fancy way of saying distances are shrinking, i.e.

max
t2B

|�
n+1(t)� �

n

(t)| 6 K̃

n max
t2B

|�1(t)� �0(t)|

One may check that |�1(t)� �0(t)| < 1, which means

lim
n!1

max
t2B

|�
n+1(t)� �

n

(t)| = 0

Which shows there is a limit point. You can think of the �

n

like an finite taylor expansion approximating the

solution that converges to the actual solution in the limit. Uniqueness of this solution we leave as an exercise.

Exercise(Existence)-Where do solutions exist?

dy

dt

=
y cos(t)

1 + y

From the statement of the PIcard-Lindelöf Theorem, we need to check where f and @

y

f are continuous. Since

f(t, y(t)) =
y cos(t)

1 + y

we see that f is continuous everywhere but the “blow up” at y = �1, thus f continuous on (t, y) 2 R⇥R\{�1}.
We have that

@f

@y

=
cos(t)

(1 + y)2

which is continuous everywhere but y = �1 again, thus @

y

f is continuous on (t, y) 2 R ⇥ R \ {�1}. Thus we

have that solutions may live in either

R⇥ (�1,�1) or R⇥ (�1,1)

Remember that it may just be on a subset of this for given (t0, y0).

Exercise(Existence)-Where do solutions exist?

y

0 ln(t) + y = cot(t), y(2) = 3

Since this is 1st order linear, let’s rewrite this in the standard form

y

0 +
1

ln(t)
y =

cot(t)

ln(t)

9
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From our previous algebra, we know

y(t) =
1

µ(t)

Z
µ(t)g(t)

Solves the ODE. As long as the integrals make sense, we’ll have a solution. Check µ(t) first,

µ(t) = exp

Z
dt

ln(t)

�

We have a singularity around t = 1, since ln(1) = 0. This means t must be larger than 1 (since our initial data

starts at t0 = 2.). The other integral we have to worry about is

Z
cot(t)µ(t)dt

cotangent has singularities at t = n⇡ with n 2 Z. Since 2 < ⇡, We see that our solution will be defined on

t 2 (1,⇡).

10
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2nd Order Equations

2nd Order Linear O.D.E Second order linear ordinary di↵erential equations take the form

y00(t) + p(t)y0(t) + q(t)y(t) =

(
0 (= Homogeneous

g(t) (= Non-Homogeneous

How do we solves equations of this form? It depends on quite a few things, but let’s stress the importance

of the word linear. Suppose that y1 and y2 solve the homogeneous problem, then we have that their linear

combination is also a solution. Let’s check this by plugging y = Ay1 +By2, A,B 2 R, into the ODE. We have

y00 + py0 + qy =Ay001 +By002 + p(Ay01 +By02) + q(Ay1 +By2)

=A (y001 + py01 + qy1)| {z }
=0

+B (y002 + py02 + qy2)| {z }
=0

=0

Thus any linear combination of solutions is a solution. We’ll only consider the simpler cases in this course,

starting with Homogeneous with constant coe�cients. It’s convenient to write this case as

ay00 + by0 + cy = 0 where a, b, c 2 R

instead of solving this directly, let’s try to guess the solution here( later we’ll have a more constructive approach

with 1st order systems which will show that nth order ODE’s have n linearly independent solutions). Guess

y(t) = e�t

as a solution with � 2 C. If we plug this into the ODE we see y(x) is a solution if

e�t(a�2 + b�+ c) = 0

Since the exponential is never zero, our only hope is that � is a root of the quadratic polynomial. This polynomial

has a special name, it is called the characteristic equation

P (�) = a�2 + b�+ c

Clearly � is a root if

�± =
�b±

p
b2 � 4ac

2a

1
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which means that e�±x is a solution. We write �± cause there are two possibilities of the choice of sign taken for

a solution. It turns out that for 2nd Order ODE, we’ll have two “fundamental solutions”, and these two roots,

�+ and �� correspond to the general form of our solutions. Though this of course depends on the quantity

inside the square root, call it the discriminate (�), i.e.

� = b2 � 4ac

We see three cases:

(a) � > 0, Distinct Roots In this case we have that both roots �+ and �� are real, so we have a general

solution of

y(t) = Ae�+t +Be��t where A,B 2 R

(b) � < 0, No Real Roots In this case we have that both are roots are complex number since we’re taking

the square root of a negative number. For now let’s just call
p
�1 = i and without going into too much

detail, we state Euler’s formula (some consider this one of the best formula’s in mathematics since it

relates 1, 0,⇡, i and e with ✓ ⌘ ⇡)

ei✓ = cos ✓ + i sin ✓

Note: One can visualize this as the (x, y) position of a circle of radius one given in terms of the angle ✓.

Back to the matter of our imaginary roots, we’ll call them

�± =
�b

2a|{z}
=⌘

±i

p
4ac� b2

2a| {z }
=⇠

= ⌘ ± i⇠

Using additivity of the exponential, ea+b = eaeb, we have that our complex valued solution takes the form:

y(x) = Ae(µ+i⇠)t +Be(µ�i⇠)t = eµt
�
Aei⇠t +Be�i⇠t

�
where A,B 2 C ⇠= R+ iR

This solves the ODE algebraically, but it’d be nice if we have a real valued solution. It turns out that for

this to happen, we need y(x) = y(x), where the complex conjugate is defined as

z = µ+ i⇠ & z = µ� i⇠

This condition implies that

y(x) = eµt
�
Aei⇠t +Ae�i⇠t

�
A 2 C

is real valued, but the form still looks complex valued. To make things look real, we invoke Euler’s Formula

and notice:

y(x) =eµt
�
Aei⇠t +Ae�i⇠t

�

=eµt
�
A(cos(⇠t) + i sin(⇠t)) +A(cos(⇠t)� i sin(⇠t))

�

=eµt

0

B@(A+A)| {z }
=Ã

cos(⇠t) + i(A�A)| {z }
=B̃

sin(⇠t)

1

CA

=eµt
⇣
Ã cos(⇠t) + B̃ sin(⇠t)

⌘

2
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which is a real valued solution if with Ã, B̃ 2 R. As a final remark, notice that

Ã = 2<(A) & B̃ = �2=(A)

i.e. Ã is twice the real part of A and B̃ is twice the negative imaginary part of A. This wraps up the

complex roots case.

(c) � = 0, Repeated Roots In this case, it seems as if we only have one solution to the ODE, namely

� = � b

2a
& y(t) = Ae�t where A 2 R

There are a few ways to derive the second solution, but we’ll go over a case known as Reduction of

Order . Consider the ODE,

y00 + py0 + qy = 0

and suppose that y1 solves the ODE. Try

y(t) = u(t)y1(t)

as a solution. We’ll find that there is actually a very nice expression for u(t). We have that

y0 = u0y1 + uy01 & y00 = u00y1 + 2u0y01 + uy001

via product rule. Substituting this into the ODE, we obtain (with a bit of rearranging)

u00y1 + u0(2y01 + py1) + u (y001 + py01 + qy1)| {z }
=0

= 0

we see the u term drop out since y1 is a solution by assumption. We’re e↵ectively left with a 1st order

ODE

u00 + u0
✓
2
y01
y1

+ p

◆
= 0

this is easily solvable using separability. Noting that d

dt

ln(f(t)) = f 0/f via chain rule. We obtain

u00 + u0
✓
2
y01
y1

+ p

◆
= 0 ()

Z
du0

u0 =

Z ✓
�2

y01
y1

� p

◆
dt

=) ln |u0| = ln

✓
1

y21

◆
�
Z

p(t)dt

=) u(t) =

Z
A exp

�
�
R
p(t)dt

�

y21
dt where A 2 R

Thus we see that the second solution to the ODE may be found via

y(t) = y1(t)

Z
A exp

�
�
R
pdt

�

y21
dt

In this case of the repeated root, we have p = b/a and y1 = exp(� b

2a t). Plugging this into the formula

gives

y(t) = e�
b
2a t

Z
Adt = A te�

b
2a t

| {z }
=y2

+B e�
b
2a t

| {z }
=y1

where A,B 2 R

That finishes up the third case.

Now that we’ve seen each case derived, we should have a feel for what we’re looking for in terms of solutions

for 2nd order homogeneous constant coe�cients. Let’s look at some examples to see how we may apply what

we’ve done.

3
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Example(� > 0) - Solve the IVP

y00 + 8y0 � 9y = 0, y(1) = 1, y0(1) = 0

Via the above which we just talked about, we see that the characteristic equation for this ODE is

P (�) = �2 + 8�� 9 = (�+ 9)(�� 1)

From our factorization it is clear that are two roots are �1 = �9 and �2 = 1. Thus the general solution to this

ODE is

y(t) = Ae�9t +Bet, A,B 2 R

Given the initial data, this gives us 2 equations, 2 unknowns. Namely

Ae�9 +Be = 1 & � 9Ae�9 +Be = 0

Solving this for A and B will give you that the solution to the IVP is

y(t) =
1

10

⇣
9et�1 + e9(1�t)

⌘

As you can see, our general formulas are doing a bulk of the work!

Example(� < 0) - Solve the IVP

y00 + 2y0 + 2y = 0, y
⇣⇡
4

⌘
= 2, y0

⇣⇡
4

⌘
= �2

We find the characteristic equation, in this case we have

P (�) = �2 + 2�+ 2

It’s easy to check that � < 0 and find that

�± = �1± i

We know the general solution takes the form

y(t) = e�t (A cos(t) +B sin(t)) where A,B 2 R

Now to solve for the coe�cients, we plug in the initial data. We again have 2 equations, 2 unknowns. Namely

e�
⇡
4

✓
A+Bp

2

◆
= 2 & � 2e�

⇡
4

✓
Bp
2

◆
= �2

It’s easy to solve and find the solution to the IVP is

y(t) =
p
2e

⇡
4 �t (cos(t) + sin(t))

Example(� = 0) - Solve the IVP

y00 + 4y0 + 4y = 0, y(�1) = 2, y(1) = 1

As we’ve been seeing, we first find the characteristic equation. It clearly is

P (�) = �2 + 4�+ 4 = (�+ 2)2

4
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Their is only one root to the above, it is

� = �2

Thus, using are previous construction we know the general solution is

y(t) = Ate�2t +Be�2t where A,B 2 R

Now we find A,B using the initial data. Plug and chug, 2 equations, 2 unknowns

�Ae2 +Be2 = 2 & Ae�2 +Be�2 = 1

We find the solution to the IVP is

y(t) =

✓
e4 � 2

2e2

◆
te�2t +

✓
e4 + 2

2e2

◆
e�2t

Euler Equations As a special case of what we’re talking about, and an example of how we may change

variables in ODE, consider

t2y00(t) + ↵ty0(t) + �y(t) = 0, where ↵,� 2 R, t > 0

Take the change of variables t ! ln(t), i.e. x = ln(t). Using chain rule, we may calculate y0(x) and y00(x) in

terms of y0(t) and y00(t). We have

dy

dt
=

dy

dx

dx

dt
= y0(x) · 1

t
&

d2y

dt2
=

d

dt

✓
dy

dt

◆
=

d

dt

✓
y0(x(t))

t

◆
= y00(x) · 1

t2
� y0(x) · 1

t2

Substituting this into the above ODE gives a constant coe�cient one!

y00(x) + (↵� 1)y0(x) + �y(x) = 0

This means all our previous work applies to this case as well. As an exercise for yourself, convert the general 3

cases over to the Euler Equations. You’ll see that it corresponds roughly to trying t� as a solution instead of

e�t. This is because

e�x = e� ln t = eln t

�

= t�

Example(Euler Equations) - Find the general solution to

t2y00 + 7ty0 + 10y = 0, t > 0

From the remark above, we substitute t� into the equation to find our characteristic equation. We see the

equation becomes

t�(�(�� 1) + 7�+ 10) = 0

Since t > 0, the only way for this to be a solution is that � is a root of the characteristic equation:

P (�) = �(�� 1) + 7�+ 10 = �2 + 6�+ 10

We see the roots of the quadratic are

�± = �3± i

From the exercise of converting over the formulas in the Euler case, we see the general solution is

y(t) =
1

t3

⇣
A sin(ln(t)) +B cos(ln(t))

⌘
where A,B 2 R, t > 0

5
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Wronskian - A tool for Linear Independence The Wronskian (W ) is defined as

W [y1, y2] = det

 
y1 y2

y01 y02

!
= y1y2 � y01y2

where y1, y2 solve y00 + py0 + qy = 0. Notice that the Wronskian is a function of t if y1, y2 are functions of t. It

has the following very remarkable property

y1, y2 are linearly independent () W [y1, y2](t) 6= 0 8t (where defined)

This means that if y1 and y2 solve a 2nd order linear equation with W [y1, y2] 6= 0 then y(t) = Ay1 +By2 is the

general solution.

Abel’s Formula - Formula for the Wronskian If y1 and y2 solve y00 + py0 + qy with p and q continuous

on an interval I. Then we have

W [y1, y2](t) = A exp


�
Z

p(t)dt

�

This is easily derived by showing that W 0 + pW = 0, then solving this ODE. We leave it as an exercise.

Reduction of Order - Through the Wronskian We derived a formula for the reduction of order method.

We’ll now see this is contained within the Wronskian itself! Let’s set ourselves in the same situation, we know

y1 solves y00 + py0 + qy = 0. The Wronskian via Abel’s Formula gives us a way to compute W without y2, i.e.

we may solve y2 through the definition of the Wronskian.

y1y
0
2 � y01y2 = W [y1, y2] =) d

dt

✓
y2
y1

◆
=

y02
y1

� y01y
0
2

y21
=

W [y1, y2]

y21

=) y2
y1

=

Z
W [y1, y2]

y21
dt

=) y2(t) = y1(t)

Z
W [y1, y2](t)

y21
dt

which is exactly the formula we derived earlier.

Example(Reduction of Order) Given y1, find y2 if

x2y00 + xy0 +

✓
x2 � 1

4

◆
y = 0, x > 0, y1(x) =

sinxp
x

Recall the formula we derived,

y(x) = y1

Z
W

y21
dx

We may compute W by reducing the ODE to the standard form of

y00 +
1

x|{z}
=p

y0 +

✓
1� 1

4x2

◆
y = 0

Thus, via Abel’s formula we have

W [y1, y2](x) = A exp

✓
�
Z

dx

x

◆
= A exp

✓
ln

1

x

◆
=

A

x
where A 2 R

6
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Now we evaluate the integral in the formula we derived

y(x) = y1

Z
W

y21
dx = Ay1

Z
dx

sin2 x
= y1

Z
csc2 x dx = Ay1 cotx+By1 =

A cosx+B sinxp
x

with A,B 2 R and B is our integration constant. We see that if you take B = 0 we’ll get the “second

fundamental part” of the solution. Thus our second fundamental solution is

y2(x) =
cosxp

x

Example(Wronskian and Fundamental Solutions) Consider y00�y0�2y = 0, one can check that y1 = e�t

and y2 = e2t. These two solutions form a fundamental set for the ODE since

W [y1, y2] = y1y
0
2 � y01y2 = 3et 6= 0 8t 2 R =) [y1, y2] are fundamental

Since the ODE is linear, we know that y3 = �2y2, y4 = y1 + 2y2, and y5 = 2y1 � 2y3 are also solutions. Let’s

check some pairs to see if they are fundamental.

1. Is [y1, y3] fundamental? We see it is since W [y1, y3] = �2W [y1, y2] 6= 0.

2. Is [y2, y3] fundamental? We see it isn’t since W [y2, y3] = �2W [y2, y2] = 0

3. Is [y1, y4] fundamental? We see it is since W [y1, y4] = W [y1, y1]| {z }
=0

+2W [y1, y2] 6= 0

4. Is [y4, y5] fundamental? We see it isn’t since

y5 = 2y1 + 4y2 = 2y4 =) W [y4, y5] = 2W [y4, y4] = 0

Exact 2nd Order Equations We say

P (x)y00 +Q(x)y0 +R(x)y = 0 is exact () [P (x)y0]0 + [f(x)y]0 = 0

Let’s find the conditions on P,Q,R for exactness. Notice that

[P (x)y0]0 + [f(x)y]0 = P 0y0 + Py00 + f 0y + fy0 = P (x)y00 + (P 0 + f)y0 + f 0y = 0

This implies that f 0 = R, i.e.

f =

Z
R(x)dx

We see that Q = P 0 +
R
R(x)dx. This implies we need

P 00 �Q0 +R = 0 for exactness

Non-Homogeneous Equations We’ll introduce some basic methods to solve some non-homogeneous 2nd

order linear equations here. Namely

y00 + py0 + qy = g

Notice that if y1 and y2 that solve the homogeneous equation will not change a particular solution to the above

ODE. Thus the general solution to a non-homogeneous 2nd order linear ODE must take the form

y(t) = Ay1(t) +By2(t)| {z }
fundamental

+ y
p

(t)
| {z }

particular

where A,B 2 R

7
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The Method of Undetermined Coe�cients, i.e. Guess the Answer This is a very special way of

solving simple expressions for g(t). Namely if g(t) takes the form:

g(t) =

8
>>>><

>>>>:

P
n

(t) = a
n

tn + . . .+ a1t+ a0 Polynomials

P
n

(t)e↵t Exponentials /Polynomials

P
n

(t)e↵t

(
sin(�t)

cos(�t)
Trig/Exp/Poly

Then we may just guess that form as the answer for the particular solution, and reduce the problem to a system

of equations and solve for the constant. Careful!!! if the fundamental solution already contains one of

the terms you’re guessing, you must add a t to make it a repeated root for this method to work!

Example(Undetermined Coe�cients) - Find the general solution to

y00 + y = 3 sin 2t+ t cos 2t

First we solve the homogeneous part. Clearly, y00 + y = 0 gives

y(t) = A sin t+B cos t+ y
p

(t)

We see that since g(t) takes one of the nice forms mentioned above, it is possible to guess the answer. We guess

y
p

(t) = c1 sin(2t) + (c2t+ c3) cos(2t) where c1, c2, c3 2 R

since we see t cos(2t) we guess up to a first order polynomial. Substitute this into the equation and plug and

chug to deduce :

LHS = y00
p

+ y
p

= (�3c1 � 4c2) sin(2t) + (�3tc2 + c3) cos(2t)

RHS = 3 sin 2t+ t cos 2t

By comparing coe�cients, we see we have

�3c1 � 4c2 = 3 & � 3c2 = 1 & c3 = 0

thus we have

c2 = �1

3
& c1 = �5

9
& c3 = 0

This means the general solution to the ODE is

y(t) = A sin t+B cos t� 5

9
sin(2t)� t

3
cos(2t)

Variation of Parameters Suppose that y1 and y2 solve y00 + py0 + qy = 0, then suppose that y = A(t)y1 +

B(t)y2 (i.e. make the constants functions, vary the parameters) solves

y00 + py0 + qy = g

It turns out we have flexibility in the constraints of the resulting system, so suppose in addition thatA0y1+B0y2 =

0 it is possible to obtain the following after some algebra

A0 = � y2g

W [y1, y2]
& B0 =

y1g

W [y1, y2]

i.e.

y(t) = �y1(t)

Z
y2g

W [y1, y2]
dt+ y2(t)

Z
y1g

W [y1, y2]
dt

solves the non-homogeneous ODE. Where W [y1, y2] is exact since we’re given y1, y2.

8
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Example(Variation of Parameters) - Find the general solution to

y00 � 2y + y =
et

1 + t2

We first solve the homogeneous component to obtain that

y(t) = A et|{z}
=y1

+B tet|{z}
=y2

+y
p

(t)

By definition of the Wronskian, we have that

W [y1, y2](t) = y1y
0
2 � y01y2 = e2t

Now we may compute the integrals in the formula given above. We have

A(t) = �
Z

y2g

W [y1, y2]
dt = �

Z
t

1 + t2
dt = �1

2
ln(1 + t2) +A

B(t) =

Z
y1g

W [y1, y2]
dt =

Z
dt

1 + t2
= arctan(t) +B

with A,B 2 R as the integration constants. Thus we see the general solution to the ODE is

y(t) = Aet +Btet � et

2
ln(1 + t2) + tet arctan(t)

9
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First Order Systems

First Order Linear Systems As we’ve seen with 1st and 2nd order ODE we have two cases of homogeneous

and non-homogeneous. We’ll now consider matrix di↵erential systems and show these contain nth order ODE.

We define a first order linear system as
.

x(t) = A(t)x(t)

where x(t) : R ! Rn, A(t) : M
n⇥n

(R) ! M

n⇥n

(R) and .

x ⌘ d

dt

x(t). Since the system is linear, it turns out the

linear combination fundamental solutions form the general solution. Thus we’re looking for

x(t) = c1x
(1) + . . .+ c

n

x

(n) where c1, . . . , cn 2 R

Notice that we may write a homogeneous nth order equation as an equivalent system (matrix form) by

y

(n)+p

n�1(t)y
(n�1)+. . .+p0(t)y = 0 () .

x =

0

BBBBBBB@

0 1 0 . . . . . . 0

0 0 1 0 . . . 0
...

...
. . .

. . .
...

0 . . . . . . . . . 1 0

�p0 . . . . . . . . . . . . �p

n�1

1

CCCCCCCA

x where x(t) =

0

BBBBBBBB@

y(t)

y

0(t)
...
...

y

(n�1)(t)

1

CCCCCCCCA

We’ll see like the characteristic equation and exponential solutions appear naturally here.

The Wronskian Just as before, we’d like a notation of linear independence of our solutions to see how

complete they are. In this case, we’ll group together are fundamental solutions into a matrix, and call it a

fundamental matrix X(t) (word play in action right there). I.e. If x is the general solution to
.

x = Ax, then

x(t) = c1x
(1) + . . .+ c

n

x

(n) =

0

BBB@

...
...

...
...

x

(1)
. . . . . . x

(n)

...
...

...
...

1

CCCA

| {z }
X(t)

0

BB@

c1

...

c

n

1

CCA

| {z }
=c

= X(t)c

In this form we’ve removed all the constants into a constant vector c. Recall from linear algebra that all columns

of a matrix are linearly independent if and only if it’s determinant is non-zero. Thus, we see the ideal definition

of the Wronskian is the following

W [x(1)
, . . . , x

(n)](t) = detX(t)

1
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Let’s check how this agrees with our definition of Wronskian from earlier. Notice that this is much more natural

in the di↵erential system setting.

Example(Wronskian) Suppose that y00+py

0+ qy = 0 and
.

x = Ax are equivalent systems(have a look above

for a reminder). We’ll show that

W [y1, y2](t) = Const ⇤W [x(1)
, x

(2)](t)

One may check that equivalent systems have the property that

y1 = Ax11 +Bx12 & y2 = Cx11 +Dx12 where A,B,C,D 2 R

where our fundamental matrix is defined as

X(t) =
⇣
x

(1)
x

(2)
⌘
=

 
x11 x12

x21 x22

!

Then by definition of our old Wronskian, we have

W [y1, y2](t) =y1y
0
2 � y

0
1y2

=(Ax11 +Bx12)(Cx21 +Dx22)� (Ax21 +Bx22)(Cx11 +Dx12)

=(AD �BC)(x11x22 � x12x21)

=

�����
A B

C D

�����

�����
x11 x12

x21 x22

�����

=

�����
A B

C D

�����W [x(1)
, x

(2)](t)

Example(Construction of a System from Solutions) Consider the vector functions

x

(1) =

 
t

1

!
& x

(2) =

 
t

2

2t

!

Are the functions linearly independent? We check the Wronskian

W [x(1)
, x

(2)](t) =

�����
t t

2

1 2t

����� = t

2

If t > 0 our vectors are linearly independent (or t < 0). If these were solutions to some first order system,

we’d expect there to be some singularity at t = 0 (due to the degeneracy). Let’s create the system to check

this intuition. We want X(t) to solve
.

X = A(t)X, since W [x(1)
, x

(2)](t) 6= 0 for t > 0(The inverse X

�1 makes

sense), we have that
.

XX

�1 = A

We easily compute that

.

XX

�1 =
1

t

2

 
1 2t

0 2

! 
2t �t

2

1 t

!
=

 
0 �1

�2/t2 2/t2

!
= A

Thus X(t) is the fundamental solution to

.

x =

 
0 �1

�2/t2 2/t2

!
x where t > 0

2



Tutorial 7,8 & 9– Summer 2013 MAT 244

A Formula for the Determinant Suppose X(t) solves
.

X = AX with initial data X(t0) = X0. Then

W [x(1)
, . . . , x

(n)](t) = detX(t) = detX0 exp

Z
t

t0

trA(x)dx

�

Solving Homogeneous Linear systems with Constant Coe�cients We want to construct the solutions

to
.

x = Ax with A 2 M

n⇥n

(C). To do this, recall the following from linear algebra fact: Suppose that A is

not defective(this means that A has enough eigenvectors to span a full basis), then there exists a matrix D

consisting of the eigenvalues of A on the diagonal and a matrix ⇤ consisting of the eigenvectors of A as the

columns. Together, they satisfy

D =

0

BBBBBBBB@

�1 0 . . . . . . 0

0 �2 0 . . . 0
...

...
. . .

. . .
...

...
...

. . . 0

0 . . . . . . . . . �

n

1

CCCCCCCCA

=
⇣
~

�1 . . .

~

�

n

⌘�1
A

⇣
~

�1 . . .

~

�

n

⌘
= ⇤A⇤�1

Thus, if we consider the change of variables x = ⇤y, we obtain the following

.

x = Ax () ⇤
.

y = A⇤y () .

y = ⇤�1
A⇤y () .

y = Dy

The system in y is trivial to solve since it decouples into first order ODE. Namely we have

.

y = Dy =) dy

i

dt

= �

i

y i 2 {1, . . . , n}
These equations are all separable, this means that we have

y

i

(t) = c

i

e

�it
i 2 {1, . . . , n} c

i

2 C

This is why we’ve been guessing exponential solutions as previously. This doesn’t quite solve our original

problem though, we still need to send it back to x via x = ⇤y. Expanding this out shows

x(t) = c

i

~

�1e
�1t + . . .+ c

n

~

�1e
�1t =

nX

i=1

c

i

~

�

i

e

�it

This e↵ectively reduces the problem of solving a homogeneous linear system with constant coe�cients to finding

the eigenvalues and eigenvectors of A.

Example(2nd order Homogeneous with Constant Coe�cients as a System) From our previous

discussion, its obvious that (given a 6= 0)

ay

00 + by

0 + cy = 0 () y

00 +
b

a

y

0 +
c

a

y = 0 () .

x =

 
0 1

�c/a �b/a

!
x where x =

 
y

y

0

!

This will explain why we called the 2nd order linear characteristic equation, well... a characteristic equation.

The eigenvalues of the above matrix are given by the roots of

P (�) =

�����
� �1

c/a �+ b/a

����� = �

2 +
b

a

�+
c

a

Thus we have

P (�) = 0 () a�

2 + b�+ c = 0

which is the equation we used previously. Now we see where the name comes from.

3
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Example(2⇥ 2 Matrix system with Constant Coe�cients) Solve

.

x =

 
1 i

�i 1

!
x

As we’ve seen from the above, the general solution reduces to finding the eigenvalues and eigenvalues of A. Let’s

compute the characteristic equation.

P (�) = det(A� I�) =

�����
1� � i

�i 1� �

����� = �(�� 2)

Thus the eigenvalues are � = 0 and � = 2. Let’s find the eigenvectors by checking the kernels now. For � = 0

we have

ker

 
1 i

�i 1

!
= span

 
1

i

!
=) ~

�0 =

 
1

i

!

For � = 2 we have

ker

 
�1 i

�i �1

!
= span

 
1

�i

!
=) ~

�2 =

 
1

�i

!

Thus the solution to the system is

x(t) = c1

 
1

i

!
+ c2

 
1

�i

!
e

2t where c1, c2 2 C

2 ⇥ 2 System Types and Terminology Just as with the 2nd order linear case with constant coe�cients,

there are 3 types of solutions for 2 ⇥ 2 matrices with constant coe�cients(with one extra degenerate case).

Following the same argument as before, it all comes down to the characteristic equation. Consider

.

x =

 
a b

c d

!
x where a, b, c, d 2 R

Then we have the characteristic equation as

P (�) =

�����
�� a �b

�c �� d

����� = �

2 � (a+ d)| {z }
traceA

�+ ad� bc| {z }
detA

We see the roots of this equation are

�± =
a+ d

2
±
p
(a+ d)2 � 4(ad� bc)

2
=

a+ d

2
±
p
(a� d)2 � 4bc

2

Again we have three possibilities for the eigenvalues, but lets see what exactly they entail.

(a) Saddle Let’s start with the case with the trace not equal to zero, p = a + d 6= 0, and the discriminant

� = (a� d)2 � 4bc > 0 , is positive, and |tr(A)| < �. From the above calculations, this implies that the

eigenvalues have di↵erent signs. I.e.

sgn(�+) 6= sgn(��)

Then the solution to the system takes the form

x(t) = A

~

�+e
�+t +B

~

��e
��t where A,B 2 R

4
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Assume that �� < 0 for the sake of convenience here. We see the following asymptotics (behaviour at

infinity).

x(t) / ~

�+ when t >> 0 & x(t) / ~

�� when t << 0

since exp(x) ! 0 as x ! �1. Notice that we only care about the direction of the flow ( i.e. the vector),

the constant doesn’t play a major role which is why we leave it as simply proportional to (/).

(b) Proper Node In this case we have that p 6= 0, � > 0 and |tr(A)| > � i.e.

sgn(�+) = sgn(��)

but notice that �+ 6= ��. In this case the solution to the system takes the form

x(t) = A

~

�+e
�+t +B

~

��e
��t where A,B 2 R

as before, but the asymptotics are di↵erent here. Assume that �+ > 0 and that �+ > ��. Then we see

that

x(t) / ~

�+ when t >> 0 & lim
t!�1

x(t) = 0

(c) Spiral In this case we have that p 6= 0 and � < 0. i.e.

�± = p± i

p
|�|

we’ll have a solution that takes the form

x(t) = e

pt

h
A

~

�+e
i

p
|�|t +A

~

��e
�i

p
|�|t
i

where A 2 C

noting that ~

�+ = ~

��, we may use Euler’s identity to find a closed form of the above. Assume

�+ =

 
x1 + iy1

x2 + iy2

!
where x

i

, y

i

2 R

then if we substitute Euler’s identity in, we obtain

x(t) = e

pt

"
A

 
x1 + iy1

x2 + iy2

!⇣
cos(

p
|�|t) + i sin(

p
|�|t)

⌘
+A

 
x1 � iy1

x2 � iy2

!⇣
cos(

p
|�|t)� i sin(

p
|�|t)

⌘#

Gathering like terms reveals

x(t) = e

pt

"
(A+A)

 
x1 cos(

p|�|t)� y1 sin(
p|�|t)

x2 cos(
p|�|t)� y2 sin(

p|�|t)

!
+ i(A�A)

 
x1 sin(

p|�|t) + y1 cos(
p|�|t)

x2 sin(
p|�|t) + y2 cos(

p|�|t)

!#

We know that A+ A = Ã 2 R and i(A� A = B̃ 2 R, thus we usually write the real form of the solution

as

x(t) = e

pt

"
Ã

 
x1 cos(

p|�|t)� y1 sin(
p|�|t)

x2 cos(
p|�|t)� y2 sin(

p|�|t)

!
+ B̃

 
x1 sin(

p|�|t) + y1 cos(
p|�|t)

x2 sin(
p|�|t) + y2 cos(

p|�|t)

!#

notice solutions of this type rotate around on ellipses with some given expansion(or dilation ) corresponding

to the exp(pt) term in the front. It’s easy to see if p = 0, the solution will always rotate around a fixed

orbit.

(d) Improper Node In this case we’ll have � = 0, which one can show means the matrix is defective and

the previous diagonalization argument falls apart. We’ll cover this in detail later on.

5
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Example(Spiral System) Solve the following system in real form

.

x =

 
1 2

�1 1

!
x

To begin, find the eigenvalues of the characteristic equation.

P (�) =

�����
1� � 2

�1 1

����� = (1� �)2 + 2 = �

2 � 2�+ 3

Thus, we see through the quadratic equation that

P (�±) = 0 () �± = 1±
p
2i

The eigenvectors corresponding to the system are found by checking the kernel. We see, for �+,

ker(A� I�+) = ker

 
�p

2i 2

�1 �p
2i

!
= span

 
�p

2i

1

!
=) ~

�+ =

 
�p

2i

1

!

Notice if the eigenvalues are complex, and the matrix is real. i.e. we have that �+ = �� and A = A, this means

Ax = �+x =) A~x = �+~x () A~x = ��~x

This means that the eigenvector corresponding to �� is just the complex conjugate of the eigenvector corre-

sponding to �+, i.e.

~

�� = ~

�+ =

 p
2i

1

!

Thus

x(t) = e

t

"
A

 p
2i

1

!
e

�
p
2it +A

 
�p

2i

1

!
e

p
2it

#
where A 2 C

is the real valued solution. Calling upon Euler’s Identity we may deduce that

x(t) = e

t

"
Ã

 p
2 sin

p
2t

cos
p
2t

!
+ B̃

 p
2 cos

p
2t

� sin
p
2t

!#
where Ã, B̃ 2 R

With the usual Ã = A+A and B̃ = i(A�A).

Example(Which way does a spiral system spin?) One could always solve the system and just check the

answer, but let’s show we can deduce this from the matrix itself ( once we know it’s a spiral type of course).

From our previous analysis, we basically just have to compute x1, y1, x2, y2 corresponding to the page before.

We compute the eigenvector to find this explicitly. As a exercise, you may find that

~

�+ =

 
��a+ d+

p
(a� d)2 + 4bc

2c
, 1

!
& ~

�� =

 
��a+ d�p(a� d)2 + 4bc

2c
, 1

!

e↵ectively finding x1, y1, x2, y2. Since the system is a spiral, we must have bc < 0 (or else the square root isn’t

imaginary). Thus we have two cases, consider the case when b > 0 and c < 0. We then have that y1 > 0 from

the above. What does this mean in terms of our previous formula (i.e. do we spiral clockwise (cw) or counter

clockwise (ccw)). You should see that this means we’re cw. The other case is when b < 0 and c > 0, this case

is the opposite direction, i.e. when we’re ccw. The punch line of this is that you just have to check the sign of

the b: b > 0 means cw and b < 0 means ccw.

6
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Matrix Exponentials Consider
.

x(t) = Ax(t) when A is not a function of t and define the formal series

expansion of the exponential as

x(t) = exp(At) = I +
1X

n=1

A

n

t

n

n!

Notice that this function solves the system since

dx

dt

=
d

dt

exp(At) =
1X

n=1

A

n

t

n�1

(n� 1)!
= A

1X

n=1

A

n�1
t

n�1

(n� 1)!
= A

1X

n=0

A

n

t

n

n!
= Ax

We also see that exp(0) = I, thus, since x(t) = X(t)~c previously, by uniqueness of solution to the IVP we

immediately have

exp(At) = X(t)X�1(0)

some call the special fundamental solution at t0 the fundamental solution s.t. �(t0) = I, thus by linearity we

have the following identities

exp(A(t� t0)) = �
t0(t) = X(t)X�1(t0)

Example(Matrix Exp) Solve the IVP in the special fundamental solution form.

.

x =

 
�1 �4

1 �1

!
x, x(0) =

 
3

1

!

One may find the characteristic equation to find the eigenvalues,

P (�) = �

2 + 2�+ 5 =) �± = �1± 2i

The eigenvectors are easily found to be

~

�+ =

 
2i

1

!
& ~

�� =

 
�2i

1

!

Thus, one may deduce that a fundamental solution to the system is (via our previous computations)

X(t) = e

t

 
�2 sin 2t 2 cos 2t

� cos 2t sin 2t

!

Thus, the exponential solution or special fundamental matrix is

�0(t) = X(t)X�1(0)

We have

X

�1(t) = �e

�t

2

 
sin 2t 2 cos 2t

� cos 2t �2 sin 2t

!
=) X

�1(0) =
1

2

 
0 �2

1 0

!

Therefore

�0(t) =

 
cos 2t 4 sin 2t
1
2 sin 2t cos 2t

!

Notice we may check our computation with �(0) = I. Thus the solution to the IVP is

x(t) = �0(t)

 
3

1

!

7



Tutorial 7,8 & 9– Summer 2013 MAT 244

Variation of Parameters If we have non-homogeneous system, such as

.

x(t) = A(t)x(t) + g(t)

There is a formula just as in the 2nd order case. It’s most easily written interns of the fundamental solution to

the homogeneous system. Let X(t) be the fundamental solution of
.

X = A(t)X, then we have that

x(t) = X~c+X

Z
X

�1(t)g(t)dt

solves the non-homogeneous system. This is easily verified since

.

x(t) =
.

X~c+
.

X

Z
X

�1(t)g(t)dt+X(X�1
g(t)) = A

✓
X~c+X

Z
X

�1(t)g(t)dt

◆
+ g(t) = Ax(t) + g(t)

Furthermore, if A(t) is constant valued, we have that

x(t) = �
t0(t)x(t0) +

Z
t

t0

�
t0(t� s)g(s)ds

Prove this as an exercise.

Jordan Normal Form and Defective Matrices Recall that a defective matrix is one in which the algebraic

multiplicity does not match the geometric. i.e. the Eigenbasis is incomplete. More specially, this will only

happen in cases of repeated roots (i.e. algebraic side of things), i.e.

P (�) = (�� �

m

)k . . .

Here the eigenvalue �
m

is repeated k times and thus has an algebraic multiplicity of k. If we can only find r < k

eigenvectors, we need a way to generate something to complete the basis in a nice way. It turns out we may do

this, and it is called Jordan Normal Form. The theorem states we may create k � r generalized eigenvectors to

account for the deficiency, such that for some ⇤ consisting of the eigenvectors and generalized eigenvectors we

have

J =

0

BBBBBBBB@

�1 �1 0 . . . 0

0 �2 �2 . . . 0
...

...
. . .

. . .
...

...
...

. . .
�

n�1

0 . . . . . . . . . �

n

1

CCCCCCCCA

= ⇤A⇤�1

where �

i

= 0 or 1 depending on if �
i

is accounted in the Eigenbasis. Furthermore, we may section these into

blocks of all the same eigenvalue. For all blocks that have no deficiency, they are just diagonal. Otherwise, we’ll

have 1’s where the generalized eigenvectors (ordered). We may create these generalized eigenvectors (�gi
m

) by

finding a solution to

(A� I�

m

)�g

m

= ~

�

m

& (A� I�

m

)�gi+1
m

= �

gi
m

One we have this, it’s convenient to decompose J into it’s Jordan Blocks ( sub-matrices in which the diagonal

elements are all the same in each block). In general, we’ll have diagonal matrices D

�m and upper diagonal

matrices (with 1’s just above the diagonal) J
�m , together we can say

J =

0

BB@

D

�1/J�1 0 0

0
. . . 0

0 0 D

�k/J�k

1

CCA

8
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where / means or. We solved the case with D

�m already, the new guy is J
�m . So suppose

J

�k =

0

BBBBBBBB@

�

k

1 0 . . . 0

0 �

k

1 . . . 0
...

...
. . .

. . .
...

...
...

. . . 1

0 . . . . . . . . . �

k

1

CCCCCCCCA

Using the change of variables y = ⇤x, we have that
.

x = Ax becomes
.

y = J

�ky. Thus the system solutions can

be constructed from the top down by considering y = (y1, . . . , yn) and take all but the first zero, then all but

the 1 and 2 zero, all the way to n. i.e.

y

(1) =

0

BBBBBBBB@

y1

0
...
...

0

1

CCCCCCCCA

=) .

y1 = �

k

y1 =) y1 = e

�kt

y

(2) =

0

BBBBBBB@

y2

y1

0
...

0

1

CCCCCCCA

=)
(

.

y2 = �

k

y2 + y1
.

y1 = �

k

y1

=)
(

y2 = te

�kt

y1 = e

�kt

you can check that we have the following by induction

y

(n) =

0

BBBBBBBB@

y

n

y

n�1

...

...

y1

1

CCCCCCCCA

=)

8
>>>>><

>>>>>:

y

0
n

= �

k

y

n

+ y

n�1

...

y

0
2 = �

k

y2 + y1

y

0
1 = �

k

y1

=) y

n

=
t

n�1

(n� 1)!
e

�kt

Noting that we call y(t) =
P

n

i=1 ciy
(i), with c

i

2 R, we conclude that

y(t) =

0

BBBBBBB@

P
n

i=1 ciyiP
n�1
i=1 c

i

y

i

...

c2y2 + c1y1

c1y1

1

CCCCCCCA

Thus the solution to the system is just x(t) = ⇤y(t). Let’s look at the 2 by 2 case to briefly see an explicit

formula.

2⇥ 2 Repeated Roots Formula Suppose that A is defective and
.

x = Ax. From our above remarks, we saw

that the solution to a defective system is given by

x(t) = ⇤y(t) =
⇣
~

�1
~

�

g

1

⌘ 
c1te

�1t + c2e
�1t

c1e
�1t

!
= c2

~

�1e
�1t + c1e

�1t( ~�1t+ ~

�

g

1)

9
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Example(Repeated Roots) Solve

.

x =

 
1 �4

4 �7

!
x where x(0) =

 
3

2

!

As always, we first find the eigenvalues from the characteristic equation.

P (�) =

�����
1� � �4

4 �7� �

����� = �

2 + 6�+ 9 = (�+ 3)2

Thus � = �3 is a repeated root. Next up we have the eigenvectors:

ker

 
4 �4

4 �4

!
= span

 
1

1

!
=) ~

� =

 
1

1

!

notice we’re missing an eigenvector for the basis, so we generate a generalized eigenvector from

(A� I�) ~�g = ~

� =)
 
4 �4

4 �4

!
~

�

g =

 
1

1

!
=) ~

�

g =

 
1/4

0

!

Thus, via our previous formula, we see the solution to the system is

x(t) = e

�3t

"
A

 
1

1

!
+B

 
t+ 1/4

t

!#
where A,B 2 R

Plugging in the initial data implies that

 
3

2

!
=

 
A+B/4

A

!
=) A = 2, B = 4

Thus the solution to the IVP is

x(t) =

 
3 + 4t

2 + 4t

!
e

�3t

Example(3⇥ 3 System) Find the general solution to

.

x =

0

BB@

1 0 0

�4 1 0

3 6 2

1

CCAx

As always, start o↵ by finding the characteristic equation and the eigenvalues. In this case, since the matrix is

diagonal, we have that

P (�) = (�� 1)2(�� 2)

Thus the eigenvalues are 1 and 2 with algebraic multiplicity of 2 and 1 respectively. The eigenvector for � = 2

is found by looking at the kernel

ker(A� 2I) = ker

0

BB@

�1 0 0

�4 �1 0

3 6 0

1

CCA = span

0

BB@

0

0

1

1

CCA =) ~

�2 =

0

BB@

0

0

1

1

CCA

10
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For � = 1 we have

ker(A� I) = ker

0

BB@

0 0 0

�4 0 0

3 6 1

1

CCA = span

0

BB@

0

�1

6

1

CCA =) ~

�1 =

0

BB@

0

�1

6

1

CCA

We’re missing an eigenvector for � = 1, so we have to generate a generalized one. We see

(A� I)~�g

1 = ~

�1 =)

0

BB@

0 0 0

�4 0 0

3 6 1

1

CCA~

�

g

1 =

0

BB@

0

�1

6

1

CCA =) ~

�

g

1 =

0

BB@

1/4

7/8

0

1

CCA

Thus, using our previous formulas for diagonal and Jordan blocks we obtain

x(t) = e

t

2

664A

0

BB@

1/4

�t+ 7/8

6t

1

CCA+B

0

BB@

0

�1

6

1

CCA

3

775+ C

0

BB@

0

0

1

1

CCA e

2t where A,B,C 2 R

Example(Fundamental Matrices and Matrix Exponentials) Find exp(At) if for
.

x = Ax we have

X(t) =

 
3e�t

e

t

2e�t

e

t

!

Recalling that we had uniqueness of solution, we know that

�(t) = X(t)X�1(0) = exp(At)

We compute the inverse at 0 using the inversion formula to obtain

X(0) =

 
3 1

2 1

!
=) X

�1(0) =

 
1 �1

�2 3

!

Thus the exponential is computed to be

exp(At) =

 
3e�t

e

t

2e�t

e

t

! 
1 �1

�2 3

!
=

 
3e�t � 2et 3et � 3e�t

2e�t � 2et 3et � 2e�t

!

Autonomous Systems Just as previously, we call autonomous systems things that take the form

.

x(t) = F (x)

i.e. no t dependence on the vector valued function F . We call a critical point of the system, a point x0 s.t.

F (x0) = 0 () x0 is a critical point

Example(Shifted Linear System)

Locally Linear System For autonomous systems, we may centre them around their critical points via a

change of basis ( i.e. change of variables) to obtain

.

x = F (x) = Ax+O(x2)

11
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Thus for x around 0, we have that
.

x ⇡ Ax

which is a first order approximation of the system around the critical point and talk about some of the local

properties without issue. Suppose you have
.

x = F (x) and x0 is a critical point. We have to methods of

linearizing the system. The first one is to perform the change of variables and only take the first order terms.

i.e. let y = x� x0, so we have

.

x = F (x) () .

y = F (y + x0) = Ay +O(y2)

The other is to recall Taylor’s formula, and see

F (x) = F (x0) + Jac
F

(x0)(x� x0) +O(x2)

where Jac(x0) is the Jacobian of F at x0. Notice if x0 is a critical point, the first term F (x0) drops out. For

the sake of having this written somewhere, we have (if F (x) = (f(x, y), g(x, y)))

Jac
F

(x, y) =

 
@

x

f @

y

f

@

x

g @

y

g

!

Example(Linearizing with change of variables) Find the critical points of the system and linearize

around one of them. What type of system does it look like locally?

x

0 = x+ y

2
, y

0 = x+ y or
.

x =

 
1 0

1 1

!
x+

 
y

2

0

!

Clearly the point (x, y) = (0, 0) is a critical point, and the linearized system around it is given by the first bit

of the above. i.e.
.

x =

 
1 0

1 1

!
x

is the linearized system around (0, 0). We see it is a improper node since the eigenvalues are both 1 and the

matrix is lower diagonal. We also have that

y

0 = 0 =) x = �y, 0 = x+ y

2 =) 0 = x+ x

2 = x(1 + x) =) x = �1

i.e. (�1, 1) is also a critical point. The linearized system can be found via changing variables, (x, y) !
(x+ 1, y � 1). We see that this implies

x

0 ! (x� 1) + (y � 1)2 = x+�2y + y

2
, y

0 ! (x� 1) + (y + 1) = x+ y =) .

x =

 
1 �2

1 1

!
x+

 
y

2

0

!

Thus the linearized system around (�1, 1) is

.

x =

 
1 �2

1 1

!
x

12
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Example(Linearizing with Jacobian) Find the critical points and Linearize

x

0 = (1 + x) sin y, y

0 = 1� x� cos y

in this case we see the Jacobian method is more useful. First lets find the critical points, we have that

x

0 = 0 () (1 + x) sin y = 0 () x = �1 or y = n⇡ n 2 Z

For y0, we see if x = �1

2� cos y = 0

which is impossible. If y = n⇡, we have that
(

�x n even

2� x n odd

Thus, our critical points are (0, 2n⇡) for the even guys, and (2, (2n + 1)⇡) for the odd guys. Our Jacobian in

this case is

Jac(x, y) =

 
sin y (1 + x) cos y

�1 sin y

!

Thus the linearized system around (0, 2n⇡) is

.

x =

 
0 1

�1 0

!
x

and around (2, (2n+ 1)⇡) we have

.

x =

 
0 �3

�1 0

!
x

Trajectories of Autonomous Systems For 2d autonomous systems it is possible to find a equation for the

trajectories by solving the corresponding first order ODE. If
.

x = F (x) = (f(x, y), g(x, y)), then

dy

dx

=
y

0

x

0 =
g

f

is an ODE for the trajectories.

Example(Trajectories) Find the trajectory for

x

0 = ay, y

0 = �bx, a, b, > 0, x(0) =
p
a, y(0) = 0

Well, from the above we have

dy

dx

=
�bx

ay

()
Z

ydy = �
Z

b

a

xdx () y

2 = const� b

a

x

2

The initial condition implies that
x

2

a

+
y

2

b

= 1

i.e. the trajectories are ellipses in this case. We could also have verified this by find eigenvalues and eigenvectors

with the previous method to see the system is of type centre.

.

x =

 
0 a

�b 0

!
x =) P (�) = �

2 + ab =) �± = ±i

p
ab

13
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Series Methods

Taylor Series meets ODE Recall from Calculus the following representation of continuous functions. If

f 2 C

n+1(R), then we have the series expansion centered at x
0

,

f(x) =
nX

m=1

f

(m)(x
0

)

m!
(x� x

0

)m +O((x� x

0

)m+1)| {z }
error term

This representation allows us to utilize an ODE in the following way, given an n-th order equation, we may

always rewrite the DE as

y

(n)(x) = F (x, y, . . . , y(n�1))

i.e. we may compute y

(n)(x
0

) given everything in F . If we di↵erentiate the the above in x, we obtain

y

(n+1)(x) =
dF

dx

(x, y, . . . , y(n))

Repeating this idea, we see that we may recursively find the k-th derivative by di↵erentiating the ODE. Where

we centre the expansion ( i.e. x
0

) is important! We’ll start with the idea of ordinary points, these are points

s.t. F (x, ·) has no “blow ups” around x

0

, i.e. it is continuous around x

0

. In such case we say x

0

is ordinary. If

F isn’t continuous about x
0

, we say that x
0

is a singular point.

Recurrence of series coe�cients This will be our other main tool to compute series solutions. It relies on

the fact that x

n and x

m are linearly independent for n 6= m 2 N. This method relies on the assumption that

the solution takes the form of a series, i.e.

y(x) =
1X

n=0

an(x� x

0

)n

solves y(n)(x) = F (x, y, . . . , y(n�1)). Since we’ve assumed it a solution, it should solve the ODE. With a bit of

algebra, in the cases we’ll work with, we’ll be able to rewrite the resulting form as

1X

n=0

Rn(x� x

0

)n = 0

Where Rn is some constant that comes from the simplification of F (x, y, . . . , y(n�1)). By linear independence,

we see that y(x) will be a solution if

Rn = 0 8n 2 N

1
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This is called the recurrence formula (or equation) for the system. It’s called this since it gives a method to

compute the unknown coe�cients an recursively. Since this case is a little more situational, lets have a look at

an example.

Example(Recurrence Formula) Find the series that solves

y

00 � xy

0 � y = 0 about x

0

= 1

Just as we said above, we assume that y(x) =
P

an(x�1)n is a solution and plug this into the ODE. We obtain

y

00�xy

0�y = 0 =)
 1X

n=0

an+2

(n+ 2)(n+ 1)(x� 1)n
!
�x

 1X

n=0

an+1

(n+ 1)(x� 1)n
!
�
 1X

n=0

an(x� 1)n
!

= 0

Note: A common trick that comes up with this method is to write x = (x� 1) + 1. Using this trick,

we now see that we may group the like terms as

1X

n=0

[an+2

(n+ 2)(n+ 1)� an+1

(n+ 1)� (n+ 1)an]| {z }
Rn

(x� 1)n = 0

Thus we see the recurrence formula, this gives us a method to compute the

Rn = an+2

(n+ 2)(n+ 1)� an+1

(n+ 1)� (n+ 1)an = 0 =) an+2

=
an+1

+ an

n+ 2

Now we have a recurrence relation behind all the coe�cients in the series solution. Since we weren’t given a

0

or

a

1

( i.e. the initial data), we’ll leave the general solution in terms of this constants. This allows us to distinguish

between the fundamental solutions of the system. More explicitly, we see

y(x) = a

0

✓
1 +

1

2
(x� 1)2 +

1

6
(x� 1)3 +

1

6
(x� 1)4 + . . .

◆

| {z }
y1

+a

1

✓
(x� 1) +

1

2
(x� 1)2 +

1

2
(x� 1)3 +

1

4
(x� 1)4 + . . .

◆

| {z }
y2

What written above is the solution up to 4th order, i.e. terms of (x� 1)4. We haven’t explicitly written terms

with higher order, so to avoid the dots and introduce some nice notation we’ll use O((x� 1)5) to denote terms

of order 5 and higher. There isn’t always a nice closed form solution, so we may only as for terms up to

some order.

Example(Recurrence Formula) Find the series solution for

(4� x

2)y00 + 2y = 0 about x

0

= 0

Just as we’ve done previously, assume that y(x) =
P

anx
n is a solution and plug it into the ODE. We obtain

 1X

n=0

4an+2

(n+ 2)(n+ 1)xn � an+2

(n+ 2)(n+ 1)xn+2

!
+

 1X

n=0

2anx
n

!
= 0

We may rewrite the above as (showing that we have flexibility in reenumeration)

1X

n=�2

[4an+4

(n+ 4)(n+ 3)� an+2

(n+ 2)(n+ 1) + 2an+2

]xn+2 = 0

2
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Thus we see the recurrence formula clearly in this form, and we deduce that (noting that we may do this by

linear independence once again)

an+2

=
n(n� 1)� 2

4(n+ 2)(n+ 1)
an 8n 2 N

Here we notice there is a pattern to the numbers. We find that

y(x) = a

0

✓
1� x

2

4

◆
+ a

1

 
x�

1X

n=1

x

2n+1

(2n+ 1)!!4n

!

where the double factorial is just the product of odd terms ( i.e. (2n+1)!! = (2n+1)(2n�1) . . . 5⇤3⇤1). Which

is the general solution to the ODE and the two fundamental solutions are visible with their general constants

a

0

and a

1

.

Convergence of the Series Solution We won’t concern ourselves with this technically since you’ve covered

this in a previous calculus course. There is one result we’d like to state via the Taylor Series method. We see

that y(n)(x) = F (x, y, . . . , y(n�1)) has a series solution around x

0

provide that the coe�cients of F are analytic

around x

0

( i.e. the derivatives of F make sense around x

0

). The radius of convergence is at least as large as

the minimum of the coe�cients.

Example(Taylor Series) Find the first 4 terms of the series solution to

y

00 + sin(x)y0 + cos(x)y = 0 y(0) = 0, y0(0) = 1 about x

0

= 0

In this example we have that initial data, i.e. an IVP, so we know that a

0

= 0 and a

1

= 1. Keeping up with

the notation above, we have

y

00 = � sin(x)y0 � cos(x)y = F (x, y, y0)

Via Taylor’s Theorem, we know that if y(x) =
P

anx
n, we have

an =
f

(n)(0)

n!

So via the ODE, we have that

a

2

=
y

00(0)

2
=

� sin(0)y0(0)� cos(0)y(0)

2
= 0

To find a

3

, we just have to take a derivative, we see

y

000 =
dF

dx

= sin(x)y � 2 cos(x)y0 � sin(x)y00

Thus we see that

a

3

=
y

000(0)

6
= �1

3
To find a

4

, we take another derivative. We see that

y

(4) = cos(x)y + 3 sin(x)y0 � 3 cos(x)y00 � sin(x)y000

Obviously we have that a
4

= 0 since everything drops, this means the solution up to fourth order is just

y(x) = x� x

3

3
+O(x5)

Also, since sine and cosine are analytic everywhere, we have that the radius of convergence of the above solution

is 1, i.e. all x 2 R make sense.

3
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Example(Radius of convergence) Find a lower bound for the raids of convergence for

xy

00 + y about x

0

= 1

The above form isn’t standard, we rewrite to find that

y

00 = � 1

x

y

i.e. there is a singularity at xs = 0. This means that at worst, the convergence of the solution will be

R > |xs � x

0

| = 1

Example Let x and x

2 be solutions to P (x)y00 +Q(x)y0 +R(x)y = 0. Can we say whether the point x = 0 is

ordinary or singular. Prove the answer.

Well lets check the form of the ODE. Let y = Ay

1

+By

2

= Ax+Bx

2, this of course means that

y

0 = A+ 2Bx & y

00 = 2B

Plugging this into the system implies we have

2BP (x) +Q(x)(A+ 2Bx) +R(x)(Ax+Bx

2) = 0 =)
(

A[Q(x) +R(x)x] = 0

B[2P (x) + 2xQ(x) + x

2

R(x)] = 0

Lets reduce the above equations. We see that

Q(x) = �R(x)x

So let’s plug this into the second equation.

2P (x)� 2x2

R(x) + x

2

R(x) = 2P (x)� x

2

R(x) = 0 =) x

2

R(x)

2
= P (x)

This means the ODE must take the form

x

2

R(x)


y

00 � 2

x

y

0 +
2

x

2

y

�
= 0

In this form we clearly see that x = 0 is singular.

4
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Misc - Techniques

Calculus Suppose that f : R ! R and g : R ! R are C

1 (continuous and di↵erentiable) at x 2 R. Then we

have

The Limit We say lim
x!c

f(x) = L if for all ✏ > 0, there exists a � > 0 such that for all x around c such that

0 < |x� c| < �, we have that |f(x)� L| < ✏.

Derivative The derivative of a function at x is defined as

f

0(x) ⌘ lim
h!0

f(x+ h)� f(x)

h

⌘ lim
y!x

f(y)� f(x)

y � x

Product Rule The derivative of the product fg is given by

d

dx

(f(x)g(x)) = f

0(x)g(x) + f(x)g0(x)

Chain Rule The derivative of their composition is given by

d

dx

f(g(x)) = f

0(g(x))g0(x)

Integration

Integration by Substitution This exploits the chain rule, we have
Z

g

0(x)f(g(x))dx =

Z
f(u)du

Integration by Parts This exploits the product rule, we have

Z
f

0(x)g(x)dx = f(x)g(x)�
Z

f(x)g0(x)dx

Linear Algebra Let A,B : M
n⇥n

(C) ! M

n⇥n

(C) ( a n by n matrix whose elements are functions M

i,j

:

C ! C.)

1
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Inner Product of Vectors Let ~x : Cn ! Cn and ~y : Cn ! Cn (we may drop the vector hat, and write x

alone when the context is clear). The inner product of x and y is (in various notations)

(x, y)| {z }
lazyman

= hx, yi| {z }
inner

= x · y|{z}
dot

= x

T

y|{z}
matrix

⌘
nX

i=1

x

i

y

i

Multiplication of Matrices We may multiply matrices using the following rule:

AB = C where C

i,k

=

nX

j=1

A

i,j

B

j,k

Notice that this rule can be viewed as taking the inner product(dot product) of ith row of A with the kth row

B(in the real sense!). This number makes up the ith jth entry in C. Naturally, the only way this definition will

make sense is if the inner product of these “vectors” does. i.e If A is a n⇥m matrix, and B is a m⇥ p matrix,

AB = C makes sense and is a n⇥ p matrix.

Addition of Matrices We may add matrices using the following rule:

A+B = C where C

i,j

= A

i,j

+B

i,j

i.e, it only makes sense to add matrices of the same dimensions, and then it is done element wise.

Determinant of Matrices There is a special quantity that appears while working with square matrices (i.e.

n⇥ n matrices), and it is called the determinate. The 2⇥ 2 case will be the most common we’ll deal with, we

define the determinate of A (detA) as

det

 
a b

c d

!
=

�����
a b

c d

����� = ad� bc

The general definition is a little cumbersome, and not needed for our purposes. We’ll accept the Leibniz formula

as a definition. The determinate of a n⇥ n matrix A as

det(A) =
X

�2Sn

sgn(�)

nY

i=1

A

i,�(i)

where S
n

is the symmetric group on n letters and � is a chosen permutation of the letters. The sign of �, sgn(�)

is either +1 or �1 if the permutation is even or odd respectively(number of swaps from original word). One

may see this as a recursive formula of the 2 ⇥ 2 case, by summing over smaller matrix determinants where a

row and column is removed with (�1)i+j sign and iterating until the 2⇥ 2 case.

Example(Determinate of a 3⇥ 3 matrix) Using the Leibniz formula, we have that

det

0

BB@

a b c

d e f

g h i

1

CCA =
X

�2S3

sgn(�)

nY

i=1

A

i,�(i)

There are 6 ways to rearrange 123, S
3

= {123, 231, 312, 132, 213, 321}, where the first 3 have even signs (two

swaps or no swap) and the last 3 have odd signs (one swap). Thus we have

det(A) = A

1,1

A

2,2

A

3,3| {z }
123

+A

1,2

A

2,3

A

3,1| {z }
231

+A

1,3

A

2,1

A

3,2| {z }
312

�A

1,1

A

2,3

A

3,2| {z }
132

�A

1,2

A

2,1

A

3,3| {z }
213

�A

1,3

A

2,2

A

3,1| {z }
321

2
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Inverse of Matrices It is not always possible to find an inverse to a matrix, but it is always possible if it’s

determinate is none zero. i.e.

detA 6= 0 () A

�1 exists

There is a nice formula for the 2⇥ 2 case, and it is

 
a b

c d

!�1

= A

�1 =
1

det(A)

 
d �b

�c a

!

More generally, we have to define a co-factor matrix, by C

i,j

= (�1)i+j

M

i,j

where M

i,j

is called the minor of

A

i,j

, which is the determinant of the resulting matrix with the ith row and jth column removed. Then

A

�1 =
1

detA
C

T

Integration and Di↵erentiation of Matrices This is identical to calculus in one variable, except we do

everything term by term. i.e.
d

dt

A(t) =
dA

i,j

dt

&

Z
Adt =

Z
A

i,j

dt

Example(Add,Mult,Di↵,Int) Suppose we have two matrix function A,B : M
3⇥3

(R) ! M

3⇥3

(R):

A(t) =

0

BB@

e

t 2e�t

e

2t

2et e

�t �e

2t

�e

t 3e�t 2e2t

1

CCA & B(t) =

0

BB@

2et e

�t 3e2t

�e

t 2e�t

e

2t

3et �e

�t �e

2t

1

CCA

(Addition) we have that A+ 3B is

A+ 3B =

0

BB@

e

t 2e�t

e

2t

2et e

�t �e

2t

�e

t 3e�t 2e2t

1

CCA+

0

BB@

6et 3e�t 9e2t

�3et 6e�t 3e2t

9et �3e�t �3e2t

1

CCA

| {z }
3B

=

0

BB@

8et 5e�t 10e2t

�e

t 7e�t 2e2t

8et 0 e

2t

1

CCA

(Multiplication) we have that AB is (as an exercise fill in the questions marks)

AB =

0

BB@

e

t 2e�t

e

2t

2et e

�t �e

2t

�e

t 3e�t 2e2t

1

CCA

0

BB@

2et e

�t 3e2t

�e

t 2e�t

e

2t

3et �e

�t �e

2t

1

CCA =

0

BB@

2e2t � 2 + 4e3t 1 + 4e�2t � e

t 3e3t + 2et � e

4t

4e2t � 1� 3e3t ? ?

? ? ?

1

CCA

(Di↵erentiation) we have that A0 is

d

dt

A = A

0 =
.

A =

0

BB@

e

t �2e�t 2e2t

2et �e

�t �2e2t

�e

t �3e�t 4e2t

1

CCA

(Integration) we have that
R
Adt is

Z
1

0

A(t)dt =

0

BB@

R
1

0

e

t

dt

R
1

0

2e�t

dt

R
1

0

e

2t

dt

R
1

0

2etdt
R
1

0

e

�t

dt

R
1

0

�e

2t

dt

R
1

0

�e

t

dt

R
1

0

3e�t

dt

R
1

0

2e2tdt

1

CCA =

0

BB@

e� 1 2(1� e) 1

2

(e2 � 1)

2(e� 1) 1� e

1

2

(1� e

2)

1� e 3(1� e) e

2 � 1

1

CCA

3
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Eigenvalues and Eigenvectors We may think of these matrices as a linear operator(map) that takes in a

vector and spits out a vector. When this map sends something to the same dimensional space (i.e. a matrix

which is n ⇥ n), it makes sense to take about “fixed points” through the map (vectors that don’t change the

way they’re pointing, but maybe the length changed). In the context we mean

A~x = �~x

i.e. we hit x 2 Cn with the map A : Cn ! Cn, and got x back up to some scalar � 2 C. Such x are called

eigenvectors and the � that accomplishes this is called an eigenvalue. It turns out these fixed points are an

ideal tool to analysis how our linear operator A works. This will make our life easier in solving linear systems

of di↵erential equations, so let’s find out how to find such objects. Well

Ax = �x () Ax� �x = 0 () (A� I�)x = 0

If the map (A� I�) is invertible, then we obviously have

x = (A� I�)�10 = 0

which is a trivial fixed point. So the obvious restriction to impose is that (A� I�) is not invertible. From our

discussion about determinate and inverses earlier, we know this is equivalent to

P (�) = det(A� I�) = 0

We’ll call P (�) the characteristic equation of A. The roots of this equation correspond to the eigenvalues

of A. Since the matrix is non-invertible with such a �, it turns out that the kernel (things that get mapped to

zero) of (A� I�) is non-trivial. The basis of this kernel will correspond to our eigenvectors. i.e.

x 2 ker(A� I�)

Example(Eigenvalues and Eigenvectors) Find the eigenvalues and eigenvectors for

A =

 
1

p
3

p
3 �1

!

From the above, we look at the characteristic equation which is given by

P (�) = det(A� I�) =

�����
1� �

p
3

p
3 �1� �

����� = �

2 � 4 = (�� 2)(�+ 2)

Thus, clearly the eigenvalues (i.e. the roots) are �± = ±2. To find the eigenvectors, we look at the kernel of

the map (A� I�), i.e. the things that get sent to zero. For � = 2, we have

ker(A� 2I) = ker

 
�1

p
3

p
3 �3

!
= span

 p
3

1

!
=) x

2

=

 p
3

1

!

For � = �2, we have

ker(A+ 2I) = ker

 
3

p
3

p
3 1

!
= span

 
� 1p

3

1

!
=) x�2

=

 
1

�
p
3

!

Notice that any vector in the span will work as our eigenvector since the only di↵erence is a constant which we

may pull out.

4
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Example(Hermitian Operators) Suppose that A is hermitian, this means that A = A

⇤ ⌘ A

T

. Then let

� 2 C be an eigenvalue for an eigenvector x. Notice that

hAx, xi = hx,Axi

This is true since the definition of the inner product implies

hAx, xi = (Ax)
T

x = x

T

A

T

x = x

T

Ax| {z }
A is hermitian

= hx,Axi

Furthermore, the eigenvalue � is necessarily real (� 2 R) since

�(x, x) = (x,�x) = (x,Ax) = (Ax, x) = (�x, x) = �(x, x)

To finish, note that x is an eigenvector which means x 6= 0 i.e the length (x, x) = ||x||2 > 0. By the above

equality we then have � = �, which is equivalent to saying � 2 R.
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