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each problem is worth 20 points for a total of 100.

1) Consider the nonhomogeneous problem

y0 =

 
�1 1

�1 �1

!
y +

 
t

0

!

a) By solving first the homogeneous equation y0 =

 
�1 1

�1 �1

!
y, find a fundamental matrix for

this equation. What is the phase portrait of the homogenous system? Is this stable?

Solution: Finding the fundamental matrix means to fin 2 independent solutions:

The eigenvalue equation for  
�1 1

�1 �1

!

gives

(�1� �)2 + 1 = 0

�

2 + 2�+ 2 = 0

� =
1

2

�
�2±

p
4� 8

�

� =
1

2
(�2± 2i)

� =
1

2
(�2± 2i)

� = �1± i

To find the fundamental matrix, we look for one of the eigenvectors:

 
�1 1

�1 �1

! 
⇠1

⇠2

!
= (�1 + i)

 
⇠1

⇠2

!

8
<

:
�⇠1 + ⇠2 = (�1 + i) ⇠1

�⇠1 � ⇠2 = (�1 + i) ⇠2

and both of the above equations reduce to

⇠2 = i⇠1

Thus one eigenvector of the system is ⇠1 = 1, ⇠2 = i and the corresponding solution is



y

(1) =

 
1

i

!
e

(�1+i)t

and the other solution is just a complex conjugate. Separating as usual, the real and imaginary

parts, we have:

 
1

i

!
e

(�1+i)t = e

�t

 
1

i

!
(cos t+ i sin t)

= e

�t

  
cos t

� sin t

!
+ i

 
sin t

cos t

!!

Thus the general solution can be written as

e

�t

 
c1

 
cos t

� sin t

!
+ c2

 
sin t

cos t

!!

and the fundamental matrix reduces to

 
e

�t cos t e

�t sin t

�e

�t sin t e

�t cos t

!

b) Use the fundamental matrix and variation of parameters to find the general solution to the non

homogenous system.

Using our formula for nonhomogeneous solutions, we first find the inverse of the fundamental matrix.

 =

 
e

�t cos t e

�t sin t

�e

�t sin t e

�t cos t

!

The determinant of  is easy to find:

det = e

�2t
�
cos2 t+ sin2

t

�

= e

�2t

thus

 �1 = e

2t

 
e

�t cos t �e

�t sin t

e

�t sin t e

�t cos t

!

=

 
e

t cos t �e

t sin t

e

t sin t e

t cos t

!



Usinv variation of parameters: we look for

 
u1(t)

u2(t)

!
that satisfies the equation

y(p) =  

Z
 �1

g

We compute first the integrand:

 �1
g =

 
e

t cos t �e

t sin t

e

t sin t e

t cos t

! 
t

0

!

=

 
te

t cos t

te

t sin t

!

Integrating this function is somewhat di�cult. But if we know the classic integrals (just integrate

by parts twice):

Z
e

t cos t =
1

2
e

t (sin t+ cos t)
Z

e

t sin t =
1

2
e

t (sin t� cos t)

it is not so bad. To solve

Z
te

t cos t

we set du = e

t cos t and v = t and integrate by parts:

Z
te

t cos t =
1

2
te

t (sin t+ cos t)� 1

2

Z
e

t (cos t+ sin t)

=
1

2
te

t (sin t+ cos t)� 1

4
e

t (cos t� sin t)� 1

4
e

t (cos t+ sin t)

=
1

2
te

t (sin t+ cos t)� 1

2
e

t sin t

Similarly we compute

Z
te

t sin t =
1

2
te

t (sin t� cos t)� 1

2

Z
e

t ((sin t� cos t))

=
1

2
te

t (sin t� cos t)� 1

4
e

t (sin t� cos t) +
1

4
e

t (sin t+ cos t)

=
1

2
te

t (sin t� cos t) +
1

2
e

t cos t



The particular solution is found by multiplying by our fundamental matrix

y(p) =

 
e

�t cos t e

�t sin t

�e

�t sin t e

�t cos t

! 
1
2te

t (sin t+ cos t)� 1
2e

t sin t
1
2te

t (sin t� cos t) + 1
2e

t cos t

!

=
1

2

 
t

�t+ 1

!

The general solution is written as

y =  

 
c1

c2

!
+ y(p)

with c1, c2 set by initial conditions

Mark this one easy obviously

1)c) Draw an approximate phase portrait of the nonhomogenous system. Is this system stable?

Explain why or why not!

Insert sketch

Solution: the main idea is that we can determine the behaviour as t ! ±1. Indeed in that case

e

�t ! 0 and the homogeneous part of the solution tends to zero asymptotically.

The terms in the particular solution then become important. In particular the term

1

2

 
t

�t+ 1

!

increases in magnitude and dominates the solution for large t.

as t ! �1, the homogeneous solution dominate because of the e�t terms and we have the expected

spiral behaviour.

(Any sketch recognizing this and that makes sense shold get full marks!)

2) Find the Jacobian matrix of the following vector valued functions of y =

 
y1

y2

!
(this is for those

students that never learned multivariable calculus. If you have, welcome to free marks!):

a) f(y) =

 
y1e

y2

y2e
y1

!

Solution: The Jacobian of a vector function is given by

J =

 
@f1

@y1

@f1

@y2

@f2

@y1

@f2

@y2

!



Here f1 is the first component of f(y) and f2 the second component

For this question:

J =

 
e

y2
y1e

y2

y2e
y1

e

y1

!

b)f(y) =

 
sin(y1y2)

cos (y1y2)

!

Solution:

J =

 
y2 cos (y1y2) y1 cos (y1y2)

�y2 sin (y1y2) �y1 sin (y1y2)

!

c) f(y) =

0

@
y1

y

2
1+y

2
2

y2

y

2
1+y

2
2

1

A

Solution:

J =

0

B@

y

2
2�y

2
1

(y21+y

2
2)

2
�2y1y2

(y21+y

2
2)

2

�2y1y2

(y21+y

2
2)

2
y

2
1�y

2
2

(y21+y

2
2)

2

1

CA

3) In this question, we analyze the equation for an electric circuit (you may find the end of 3.7 mildly

helpful. Elsewise consider your Gri�ths ”introduction to electrodynamics” text or any equivalent

that is freely available). In a circuit the quantity of interest is the current I(t). Assuming that

we know the capacitance (C), inductance (L) and resistance (R) in a given circuit. We assume all

three of these quantities are constant. The equation for I(t) then simplifies to

L

d

2
I

dt

2
+R

dI

dt

+
1

C

I = 0 (1)

3)a) The equation (1) is a linear second order equation with constant coe�cients. Guessing a

solution I(t) = e

�t find the characteristic equation satisfied by �

Solution: I will assume that all the constants L, R and C are positive for simplicity plugging the

usual ansatz I(t) = e

�t into the equation (1) gives

L�

2 +R�+
1

C

= 0



which is the characteristic equation we saw in chapter 3. The solutions for � using the quadratic

test:

� =
1

2L

 
�R±

r
R

2 � 4
L

C

!

3)b) Now let us transform (1) into a vector system of equations. Set y1(t) = I(t) and y2(t) =
dI

dt

(t).

Let y =

 
y1

y2

!
. Find the matrix A such that

y0 = Ay (2)

Find the eigenvalues of A and relate them to the equation you found in part a).

Setting y1 = I(t) and y2 = I

0(t), we see that y01(t) = I

0(t) = y2(t).

Similarly, y02(t) = I

00(t) = �R

L

I

0 � I

LC

= �R

L

y2 � y1

LC

where we just used equation (1). Therefore

A =

 
0 1

� 1
LC

�R

L

!

We find the eigendvalues of A in the usual way: setting 0 = det (A� �I):

det

 
�� 1

� 1
LC

�R

L

� �

!
= ��

✓
�R

L

� �

◆
+

1

LC

= �

2 +
R

L

�+
1

LC

= 0

Therefore by the quadratic formula

� =
1

2

0

@�R

L

±

s✓
R

L

◆2

� 4
1

LC

1

A

=
1

2

 
�R

L

± 1

L

r
R

2 � 4
L

C

!

This is exactly the same equation we obtained in part a)!

3)c) Clearly the quantity
�
R

2 � 4L

C

�
plays an important role. Draw a phase portrait of (2) when

R

2
> 4L

C

and when R

2
< 4L

C

. (Note: you aren’t forced to solve (2) explicitly in either case)

By looking at the Eigenvalues, it is clear that we have a stable node when R

2
> 4L

C

and a stable

spiral when R

2
< 4L

C

.



Figure 1: A typical phase plot for the stable node when R

2
> 4L

C



Figure 2: A typical phase plot for the stable spiral when R

24L

C

We plot an example for each case. In the first, let me take L = C = 1 and R = 5 and the result is

in Figure 1:

In the second, let’s take R = L = C = 1 and the result is in Figure 2

3)d) Use your phase portraits in part 3)c) to draw a sketch of I(t) in the two cases: R2
> 4L

C

and

R

2
< 4L

C

.

Solution: There is not much to do here. Just translate the x-coordinate. For example from Figure

3, we get the following for I(t):

Similarly, from Figure 2, we get Figure 4

Note that the second figure shows oscillatory behaviour while the first one does not.

3)e) Now return to (1) and solve for the general solution I(t). Is your solution consistent with your

sketches in part 3)d)? Explain why or why not.

Solution: Using our methods in chapter 3, we know how to solve a second order ode. First, in the

case that R2
> 4L

C

, we have from



Figure 3: Plot of the y1 coordinate corresponding to I(t) in the Figure 1

Figure 4: Plot of the y1 coordinate corresponding to I(t) in the Figure 2



Figure 5: A typical solution in the critical case R

2 = 4L

C

� =
1

2L

 
�R±

r
R

2 � 4
L

C

!

the general solution

y(t) = c1e
�1t + c2e

�2t

Where �1 = 1
2L

⇣
�R +

q
R

2 � 4L

C

⌘
and �2 = 1

2L

⇣
�R�

q
R

2 � 4L

C

⌘
. And since both of the

eigenvalues are negative, the solution tends to zeros as t ! 1. You can try plotting solutions for

various c1, c2 and get a similar picture to 3.

Similarly, in the case that R2
< 4L

C

, the eigenvalues are complex conjugates and we have

y(t) = e

� R
2L

 
c1 sin

 r
4
L

C

�R

2

!
+ c2 cos

 r
4
L

C

�R

2

!!

3)f) Explain what happens if R2 = 4L

C

. What does the solution look like in this critical case?

In the critical case, we look for another solution in the form te

�t. We have then a solution of the

form:

y(t) = c1e
�t + c2te

�t



where � = �R

2L is the only eigenvalue we have. Note that for any c1, c2 the solution tends to zero

but the second term tends to zero slower.

You can experiment with di↵erent values of c1 and c2 and obtain a graph similar to Figure 5

4) Consider the nonlinear system of equations for x(t), y(t):

8
<

:

dx

dt

= x� y + sin ⇡x

2

dy

dt

= cos ⇡x

2

a) Find all the equilibrium points of this system

Equilibrium points are when both x

0(t) and y

0(t) are zero. It is easiest to solve for points where

x

0(t) = 0, that is when

sin
⇣
⇡x

2

⌘
= 0

So we can take any odd number for x: x = 1, 3, 5, ...., 2n+1, .. For y0(t) = 0 is a bit more complicated:

we solve

2n+ 1� y + sin

✓
⇡ (2n+ 1)

2

◆

Note that sin
⇣

⇡(2n+1)
2

⌘
= (�1)n If n = 0, we have that y = 2 if n = 1, then again we have x = 2.

In general when n = 2k, y = 4k + 2 and if n = 2k + 1, then y = 4k + 2 as well. Our points of

equilibrium thus follow the following pattern:

(1, 2), (3, 2), (5, 6), (7, 6).....

b) Linearize the system near each equilibrium point (that means find the linear homogenous problem

solved by x̃ = x� x0, ỹ = y � y0 near each equilibrium point (x0, y0)).

Solution: Here we have to compute the Jacobian near each equilibrium point. The lucky thing is

that there are only 2 forms for the Jacobian. Let us compute it: in general we have

J =

 
1 + ⇡

2 cos
⇡x

2 �1

�⇡

2 sin
⇡x

2 0

!

Evaluating at various values of x, we have either

J =

 
1 �1

�⇡

2 0

!



for x = 1, 5, 9, ..., 4k + 1, ..

Or we have

J =

 
1 �1
⇡

2 0

!

for x = 3, 7, 11, ..., 4k + 3, ....

c) Classify the type (saddlepoint, node, etc...) and stability of each equilibrium point

Solution: If x = 4k + 1, we have

J =

 
1 �1

�⇡

2 0

!

Finding the eigenvalues gives

det

 
1� � �1

�⇡

2 ��

!
= (1� �)(��)� ⇡

2

= �

2 � �� pi

2

In this case the quadratic formula gives

� =
1

2

⇣
1±

p
1 + 2⇡

⌘

Since 2⇡ > 1, therefore one eigenvalue (with the plus sign) is positive and the other (with the

negative sign) is negative. Therefore this is a saddle point.

Similarly if x = 4k + 3 then we find the eigenvalues of

J =

 
1 �1
⇡

2 0

!

That is we solve

det

 
1� � �1

⇡

2 ��

!
= (1� �)(��) +

⇡

2

= �

2 � �+
⇡

2



Figure 6: A direction field for the nonlinear system of problem 4

Therefore the eigenvalues in this case are complex conjugates:

� =
1

2

�
1± i

p
2⇡ � 1

�

Since the real part is positive, this is an unstable spiral.

Since these are the only choices for the jacobian, there will be no other linear phase portraits near

other equilibrium points.

d) Draw an approximate phase portrait of the full nonlinear system (include your linearized system

near each point).

Solution: See Figure 6 for a direction field of this system. So long as your solution reasonably

followed these directions you should get food marks.



5) Consider a predator-prey system of the form:
8
<

:

dx

dt

= x (1� 1/2y � 1/4x)

dy

dt

= y (�1 + 1/2x)
(3)

Here x(t) � 0 models the population of prey in an environment and y(t) � 0 models the population

of predators in the same environment. Note the di↵erence from classic Lotka-Volterra system: we

have added a term proportional to �1/4x2 to the first equation in (3) to model the competition

between prey for a limited amount of food.

5)a) There are exactly three equilibrium points for the system (3). Find them

Solution: Clearly we can set x = y = 0 to find one equilibrium point (0, 0). Another is found by

setting y = 0 and 1� 1
4x = 0 in other words (4, 0). There are no points with x = 0 and y 6= 0 (the

condition x = 0 forces y = 0 as well)

Finally we look for point with x 6= 0 and y 6= 0. In this case we have

8
<

:
�1 + 1

2x = 0

1� 1/2y � 1/4x = 0

that is easily solved by x = 2 and y = 1. So the final equilibrium point is (2, 1).

5)b) Show that the equilibrium points (0, 0) and (4, 0) are unstable saddle point. Find the eigen-

values and eigenvectors of a linearisation of (3) at these points.

Solution the point (0, 0) represents the point where all the rabbits and foxes are dead. Looking for

the jacobian at this point, we have

J(x, y) =

 
1� 1

2y �
1
2x �1

2x

1
2y �1 + 1

2x

!
(4)

Thus at (0, 0), the Jacobian is

J(0, 0) =

 
1 0

0 �1

!

This matrix is diagonal and the eigenvalues are �1 = 1 and �2 = �1. The corresponding vectors lie

along the axes that is the solution to the equation:

d

dt

 
x

y

!
= J(0, 0)

 
x

y

!
(5)



is

 
x

y

!
= c1

 
1

0

!
e

t + c2

 
0

1

!
e

�t. Note of course that in writing (5), we neglect the higher order

terms in the full nonlinear equation. So this solution is really valid only close to the origin.

Think about the physical interpretation as well. The vector

 
1

0

!
represents the x-axis where there

are no foxes so rabbits are happily reproducing at an exponential rate.

On the other hand, the vector

 
0

1

!
represents the y-axis where there are no rabbits and the foxes

are dying of starvation at an exponential rate.

Moving on to the other point, (4, 0) we have

J(4, 0) =

 
�1 �2

0 1

!
(6)

Solving for the eigenvalues:

det (J(4, 0)� �I) =

 
�1� � �2

0 1� �

!

= (�1� �) (1� �) = 0

So again �1 = 1 and �2 = �1 are the eigenvalues. Searching for the eigenvector ⇠(1) corresponding

to �1 involves solving

 
�1 �2

0 1

! 
⇠1

⇠2

!
=

 
⇠1

⇠2

!

8
<

:
�⇠1 � 2⇠2 = ⇠1

⇠2 = ⇠2

The second equation tells us nothing but the first can be rewritten as ⇠1 + ⇠2 = 0 therefore we

choose ⇠

(0) =

 
1

�1

!
.

For the second eigenvector ⇠(2) corresponding to �2 we solve

 
�1 �2

0 1

! 
⇠1

⇠2

!
= �

 
⇠1

⇠2

!

8
<

:
�⇠1 +�2⇠2 = �⇠1

⇠2 = �⇠

2



both of which are telling us ⇠2 = 0 and so ⇠

(0) =

 
1

0

!
So there is a sadlle point near to (4, 0). We

write the solution near to this equilibrium point by translating the variables x, y to x̃ = x� 4 (note

we don’t need to change y). We thus have

d

dt

 
x̃

y

!
= c1

⇣
1//� 1

⌘
e

t + c2

 
1

0

!
e

�t

The second vector again corresponds to no predators however it now comes with a negative eigen-

value meaning the population of rabbits will decrease even if it is larger than 4 even in the absence

of predators. This can be explained by the extra factor we added to the Lotka-Volterra model. If

you set y = 0, the equation for x is x

0 = x(1 � 1
4x that is a typical autnomous system for one

dependent variable. All we’ve found is that x = 0 is unstable and x = 4 is stable.

The other eigenvector points in a sensible direction: an increase of foxes and a decrease of rabbits.

5)c) Show that the linearisation at other equilibrium point is a stable spiral

Solution: here we have the Jacobian:

J(2, 1) =

 
�1/2 �1

1/2 0

!

Finding the eigenvalues of J(2, 1), we have

det (J(2, 1)� �I) =

 
�1/2� � �1

1/2 ��

!

= (�1/2� �) (��) + 1/2

= �

2 + 1/2�+ 1/2 = 0

Using the quadratic equation, we get

� = 1/2
⇣
�1/2±

p
1/4� 2

⌘

= 1/2
⇣
�1/2± i

p
7/4
⌘

Since the eigenvalues are complex conjugates and the real part is neagative, this is a stable spiral.

5)d) Draw an approximate sketch of the full nonlinear solution to this system. (make sure it includes

your answers to b) and c)). What conclusion can you propose about the behaviour as t ! 1 of

x(t) and y(t) so long as both are strictly positive?



Figure 7: A direction field for the system of equations (3)

5)e) If you have access to software which can approximately solve these equations, verify numerically

that your guess is correct.

A simple java applet is available at

http://math.rice.edu/~dfield/dfpp.html that will draw the direction field of any nonlinear

system.

For part d) anything reasonably drawn gets full marks. for e), we can use the applet to draw the

phase plane, see Figure 7 for example

The main point is that the equilibrium point (2, 1) is a very strong attractor. No matter where we

start, so long as x(0) > 0 and y(0) > 0, we have lim
t!1

(x(t), y(t)) = (2, 1).

http://math.rice.edu/~dfield/dfpp.html

