MAT244 - Ordinary Differential Equations - Summer 2014
Assignment 3 Due: July 16, 2014

Full Name:

Last First

Student #:

Indicate which Tutorial Section you attend by filling in the appropriate circle:

(O Tut 01 W 12:10-13:00  WI 523  Christopher Adkins
(O Tut 02 W 17:10 - 16:00 LM 158 Yuri Cher
O Tut 03 W 17:10 - 16:00 SS 1074 Alexander Caviedes

Instructions:
e Due July 16, 2014 before the lecture at 13:10pm in MP203.
e Assignments should be completed individually.

e Write your solutions clearly, showing all steps. The solutions presented should not be your

first draft! Grading is based on correctness as well as presentation.

e Assignments may be submitted up to one week after their due date, scanned, or carefully pho-

tographed, and submitted in a PDF via email to the course instructor: craig.sinnamon@utoronto.ca

e There will be a 5% reduction in mark per day of lateness beginning after 13:10pm on the day

the assignment is due.

e Assignments may be submitted to the course instructor for remarking during office hours.
Assignments that do not meet the following criterion may not be accepted for remarking.
— the assignment was returned less than EIGHT days ago
— the assignment is written in pen
— the assignment is accompanied with an attached note clearly explaining the grading

complaint

e Note that grades may decrease after remarking.



1. Find a particular solution to the nonhomogeneous equation

y"(t) — 29/ (t) + y(t) :g (+)
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2. a) Verify that z(t) = <2> e?! satisfies the differential equation

o (3 7).
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3. Find the general solution of the system of equations
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4. For what values of « is x = 0 a spiral point.
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5. Find A, B € R such that x(¢) = ( ) e 3t

1
4 + (B) te=3" is a solution to the differential equation
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6. Consider the following differential equation y” + 5y + 4y = 0, for constants b, ¢ € R.

a) Determine a system of equations #’ = Az that is equivalent to the differential equation.
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b) Suppose that y;,y> form a fundamental set of solutions for the differential equation,

and (), 2 form a fundamental set of solutions for the equivalent system. Show that

Wiyr, y2)(t) = k W[z®, 2®](t) for some k € R.

(Hint. You don’t have to solve for y;, y» or ), 2 but you can if you want to)
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