MAT244 - Ordinary Differential Equations - Summer 2014
Assignment 2  Due: June 11, 2014

Full Name:

Last First

Student #:

Indicate which Tutorial Section you attend by filling in the appropriate circle:

(O Tut 01 W 12:10-13:00  WI 523  Christopher Adkins
(O Tut 02 W 17:10 - 16:00 LM 158 Yuri Cher
O Tut 03 W 17:10 - 16:00 SS 1074 Alexander Caviedes

Instructions:
e Due June 11, 2014 before the lecture at 13:10pm in MP203.
e Assignments should be completed individually.

e Write your solutions clearly, showing all steps. The solutions presented should not be your

first draft! Grading is based on correctness as well as presentation.

e Assignments may be submitted up to one week after their due date, scanned, or carefully pho-

tographed, and submitted in a PDF via email to the course instructor: craig.sinnamon@utoronto.ca

e There will be a 5% reduction in mark per day of lateness beginning after 13:10pm on the day

the assignment is due.

e Assignments may be submitted to the course instructor for remarking during office hours.
Assignments that do not meet the following criterion may not be accepted for remarking.
— the assignment was returned less than EIGHT days ago
— the assignment is written in pen
— the assignment is accompanied with an attached note clearly explaining the grading

complaint

e Note that grades may decrease after remarking.



1. a) State the Existence and Uniqueness Theorem for first order nonlinear ordinary differential

equations.
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b) What can you conclude about the following initial value problem from the above theorem?

tan(t +y(t)) = y'(), y(7/7) =0
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2. Given ¢o(t) = 0, compute the first three Picard iterates ¢1(t), ¢2(t), and ¢3(t) for the initial

value problem _ S: (“,,\D

V\Qc/o/”: y(t) =ty —t, y(0)=0
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d
3. Consider the equation d—?z = f(y) = cos(y).

a) Sketch the graph of f(y) versus y. f{(\{\
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b) Determine the critical (equilibrium) points, and classify each one as asymptotically sta-

ble, unstable, or semistable.
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d
c) On the set of axes below, sketch the graphs of the solutions to d—i = f(y) with initial
conditions:

Note: Be sure to clearly label which initial condition each curve corresponds to.

d
d) Is there a solution y = ¢(t) to d—i{ = sin(y) such that ¢(0) < —1 and ¢(1) > 27 Justify
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4. Given F(z,y(z)) = ycos(zy), compute - F(z,y(z)).
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5. If y is a function of x, solve the equation

—ysin(zy) + 1 = zy' sin(zy)
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6. Use Euler’s method to find an approximate value of the solution to the following initial value
problem at t = 0.3, which A = 0.1,

y'(t) =2y(t) +12, y(0)=1
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