
MAT237 - Tutorial 17 - 28 July 2015

1 Coverage

Vector derivatives, line integrals of scalar functions and vector fields, Green’s theorem.

2 Problems

I suggest the following problems. Like last time, I won’t have too much to comment about any

of these, since they’re mostly computational.

In retrospect, I sort of regret putting the third part of the first question on here, but it was

so annoying to type out that I’m keeping it here for posterity’s sake.

1. (BL 13.1.5) Let (x, y) be the usual Cartesian coordinates in R2. Recall that in polar

coordinates, these can be written as x = rcos θ and y = rsin θ.

(a) Determine the standard polar unit vectors er and eθ.

(b) Using the multivariable chain rule, determine the ∇ operator in polar coordinates.

(c) Similarly, obtain the Laplacian in polar coordinates.

2. (BL 13.2.5) Let F(x, y, z) = (x, y, z2) and let C be the curve defined by the intersection of

the cylinder x2 + y2 = 1 and the plane z = x. Evaluate
∮
C F · dx.

3. (BL 13.3.3)

(a) Show that the vector field F(x, y, z) = (ycos(xy), xcos(xy) + ez, yez) is conservative

by finding its potential function.

(b) Let C be the part of the curve given by the intersection of the sphere of radius 2

centred at the origin and the yz-plane above the x-axis. Orient C so that its tangent

vectors point in the positive y direction. Compute
∮
C F · dx.

4. (Parts of BL 13.3.5, with the statement of (a) corrected.)

(a) Let D ⊆ R2 be a region whose boundary C := ∂D is a piecewise-smooth simple closed

curve. Show that the area A(D) of D is given by:

A(D) =

∮
C
x dy = −

∮
C
y dx =

∮
C

1

2
(x dy − y dx).

(b) Use the formula above to compute the areas of some simple sorts of shapes, like circles,

ellipses, or whatever else you can parametrize the boundary of. Note, for example,

that this allows you to easily find the area of any polygon once you know its vertices.



3 Solutions and Comments

1. Solution : Recall that the transformations the other way are r =
√

x2 + y2 and θ =

arctan( yx).

(a) The unit vector r̂ in the r-direction is easy to write down, since it’s the unit length

vector in the same direction as (rcos(θ), rsin(θ)), which is just r̂ = (cos(θ), sin(θ)). In

the θ direction, we need the unit-length vector that is perpendicular to r̂ pointing in

the counterclockwise direction (measuring from the x-axis). We can just see that this is

θ̂ = (−sin(θ), cos(θ)).

(b) As the question says, we use the chain rule. First, the calculation for ∂
∂x :

∂
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=
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∂
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Similarly we compute ∂
∂y and end up with:

∂

∂y
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∂

∂r
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1

r
cos(θ)

∂

∂θ
.

Combining these, we get:
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(c) This is a bit annoying, but is an elementary application of the above. We compute:
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The same sort of calculation yields:
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Adding these up, cancelling and using the Pythagorean identity yields:
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2. Solution : Our vector field F is ∇f for f(x, y, z) = x2

2 + y2

2 + z3

3 , meaning F is conservative.

The curve C is a closed loop, and so the integral of F along the curve is 0.

If we didn’t know this fact, however, we could easily get the same result directly. A

parametrization of the curve is given by γ(t) = (cos(t), sin(t), cos(t)), for t ∈ [0, 2π). Then

γ′(t) = (−sin(t), cos(t),−sin(t)), and we can compute:

∮
C
F · dx =

∫ 2π

0
(cos(t), sin(t), cos2(t)) · (−sin(t), cos(t),−sin(t)) dt

= −
∫ 2π

0
cos2(t)sin(t) dt

= 0

3. Solution : (a) We’re looking for a function f : R3 → R such that fx = ycos(xy), fy =

xcos(xy) + ez and fz = yez.

We start by integrating the first component of F with respect to x, obtaining sin(xy) +

g(y, z) for some function g.

Differentiating this with respect to y, we obtain xcos(xy) + gy(x, y), which we’d like to

equal xcos(xy)+ ez, suggesting that we should let g(y, z) = yez +h(z) for some function h.

Finally, differentiating sin(xy) + yez + h(z) with respect to z, we obtain yez + h′(z), which

we’d like to equal yez, suggesting that h should be a constant function. We might as well

set use the constant zero function, leaving us with

f(x, y, z) = sin(xy) + yez

as our potential function. One can easily verify that F = ∇f .

(b) Since we’ve just shown that F is conservative, we know that this line integral depends

only on the endpoints of C. These endpoints are (0,−1, 0) and (0, 1, 0), and given the

orientation in the question, we are traveling from the first point to the second point.

So, by the fundamental theorem of calculus:∮
C
F · dx = f(0, 1, 0)− f(0,−1, 0) = 1− (−1) = 2.

4. (a) We know that the area of a region D is given by
∫ ∫

D dA. To apply Green’s Theorem

to this problem, we first need to find a vector field F = (F1, F2) such that ∂F2
∂x − ∂F1

∂y = 1.

There are many possible candidates for such a vector field. Three that come to mind are

F(x, y) = (0, x), F(x, y) = (−y, 0) and F(x, y) = 1
2(−y, x). Let F be any one of these.

Then applying Green’s Theorem to D and its boundary (oriented positively), we have:

A(D) =

∫ ∫
D

dA =

∫ ∫
D

∂F2

∂x
− ∂F1

∂y
dA =

∮
C
F · dx.



All that remains is to note that the three possible F’s we listed above give the three

outcomes in the problem.

(b) Start with a circle of radius R. This can be parametrized by γ(t) = (Rcos(t), Rsin(t)),

for t ∈ [0, 2π). Then we have γ′(t) = (−Rsin(t), Rcos(t)). For this first example, we’ll test

all the equivalent formulations from the problem:∮
C
x dy = R2

∫ 2π

0
cos2(t) dt = πR2,

−
∮
C
y dx = −R2

∫ 2π

0
−sin2(t) dt = πR2,

∮
C

1

2
(x dy − y dx) =

1

2

∫ 2π

0
R2cos2(t) +R2sin2(t) dt =

R2

2

∫ 2π

0
dt = πR2

Now, an ellipse. A general ellipse C centred at the origin is given by the equation x2

a2
+ y2

b2
=

1. This is most naturally parametrized in a similar way to the circle, with (acos(t), bsin(t))

for t ∈ [0, 2π). We can then compute the area of the ellipse as:∮
C
x dy = ab

∫ 2π

0
cos2(t) dt = abπ.


