
MAT237 - Tutorial 1

1 Coverage

Here’s what they’ve covered in class so far, which roughly comprises the material covered in this

tutorial.

Set Theory: Set containment, indexed families of sets, intersection, union, complement,

functions, image, preimage

Topology of Rn: Rn as a vector space, norms and distances, Cauchy-Schwarz inequality,

cross products, boundaries, interiors, exteriors, open, closed, closures

2 Problems

I suggest going over the following four problems. Some are from the Big List, some not. I’ll

give you a quick idea of the solution if it seems necessary, and discuss what’s worth stressing or

notable connections to other things.

Give them a bit of time to think about each one, and ask for ideas about how to proceed.

Really try to drag the proofs out of them if it seems like they’re being reluctant. Note that this

tutorial will be more proof-heavy than most, since the only non-proof questions they can do now

are about finding interiors and closures of things, checking that sets are open, etc.

1. (Big List 1.5) Let A,B be sets and f : A → B a function. Prove the following statements:

(a) ∀X ⊆ A, X ⊆ f−1(f(X)).

(b) ∀Y ⊆ B, f(f−1(X)) ⊆ Y .

(c) If f is injective, ∀X ⊆ A, X = f−1(f(X)).

(d) If f is surjective, ∀Y ⊆ B, f(f−1(X)) = Y .

Comments: I’m sure I don’t need to write out solutions for this. This is of course very

basic. Some students on Piazza seemed to have difficulties getting their heads around it

though. We, as mathematicians, look at this as just “unwinding definitions”, and they see

it as a mess of notation they don’t understand. When explaining solutions to the first two

parts especially, emphasize how little you have to actually think to solve this problem, so

long as you know what all the symbols mean. I also suggest using this chance to emphasize

the difference between preimages of sets and inverses of functions. That’s another thing I

saw people confused about.

I suspect many people will have already done and understood this question, so feel free to

go through it quickly if it seems like everyone is on top of it. This is an easy warm up.

2. Let U1, . . . , Un be open subsets of Rn.



(a) Show that
n∩

k=1

Uk is open.

(b) (Big List 2.5, partly) Is an intersection of infinitely distinct many open subsets of Rn

necessarily open? Support your answer completely.

Solution : (a) For ease of notation, let U =

n∩
k=1

Uk. First, note that if the intersection

is empty, then there’s nothing to check and we’re done. Otherwise, let x ∈ U . Then

x ∈ Uk for all k = 1, . . . , n. Since each Uk is open, by definition there is an ϵk > 0 such

that B(ϵk, x) ⊆ Uk. Let ϵ = min{ϵ1, . . . , ϵk}. Then since ϵ ≤ ϵk for all k, we have that

B(ϵ, x) ⊆ B(ϵk, x) ⊆ Uk for all k. This implies that x ∈ B(ϵ, x) ⊆ U , and so U is open.

(b) This is not necessarily true: the intersection of infinitely many open sets can be open,

closed, both or neither. Let’s give examples just in R.

(i) Let Uk = (0, k), for k = 1, 2, . . . . Then their intersection is (0, 1), which is open.

(ii) Let Uk = (− 1
k , 1 +

1
k ). Then their intersection is [0, 1], which is closed.

(iii) Let Uk = (0, 1 + 1
k ). Then their intersection is (0, 1], which is neither.

(iv) Let Uk = (0, 1k ). Their their intersection is empty, which is both open and closed.

Comments: The proof in part (a) is probably hard for them. Even those that could write

it correctly probably would miss the case where the intersection is empty. Focus on the

logical structure of the proof: Given a point x in U , we’re looking for the ϵ that will work

for that point, and order to get it we use the only other information available to us which

is that the other sets are open. That stuff about taking the minimum of the epsilons looks

tricky for them, but once they draw a picture it’s all straightforward, so do a lot of pointing

at pictures.

For (b), feel free to choose examples in higher dimensions for some of them. I would also

note that this is what you need to do to fully answer the question of what can arise as the

intersection of infinitely many open sets: give an example of every thing that can happen

actually happening.

3. Let’s learn about closures! Fix S ⊆ Rn for the duration.

(a) Prove that S is closed if and only if S = S̄.

(b) (Big List 2.12) Let K = {A ⊆ Rn : S ⊆ A, and A is closed }. Prove that S̄ =
∩

K.

That is, prove that the closure of S equals the intersection of all closed sets that

contain it.

Solution : First, let’s note what definitions of things they use. For them, a set is closed if

its complement is open. They also have a proposition which says that a set is closed if and



only if it contains its own boundary. Finally, they define the closure of a set as the union

of the set and its boundary.

(a) The (⇐) direction is easy given that proposition: If S = S̄ = S ∪ ∂S, then obviously S

contains its boundary.

On the other hand, if S is closed it contains its boundary, and so S ∪ ∂S = S.

(b) We show containment both ways. First note that if A ∈ K, then S ⊆ A by definition

of K, and therefore S̄ ⊆ Ā = A. Now if we have x ∈ S̄, then x ∈ S̄ ⊆ A for every A ∈ K,

and so x ∈
∩

K.

On the other hand, let x ∈
∩
K. Since S̄ is a closed set containing S we know that S̄ ∈ K,

and so in particular we have x ∈ S̄.

Comments: First, I suspect the notation
∩

K may be confusing for them. In the Big

List, that intersection is just written as
∩

A⊇S, A closedA, which I find clunky, but feel free

to use either one. I would emphasize that even though these proofs seem annoying, the

end result of them is that closed sets and closures work exactly like you hope they would.

(a) This is pretty straightforward. Some of them may be uncomfortable with the (⇒)

direction, since it looks like we didn’t do anything. Set unions are probably still weird,

artificial seeming things to them, so it may not be clear to them that the union of a set

with a subset of itself is equal to the set again.

(b) The second direction should be easy, but the first direction will be hard for them. In

particular, the fact that S ⊆ A ⇒ S̄ ⊆ Ā may not be obvious to them at all even though it

feels true. Feel free to prove this fact (which you can do by taking x ∈ S̄ and considering

the cases where x is in S or ∂S \ S separately), or just sidestep stating that as a fact and

prove it for this case.

4. Let’s use Cauchy-Schwarz! Let a1, . . . , an be real numbers such that a1 + · · · + an = 1.

Prove that √
a21 + · · ·+ a2n ≥ 1√

n
.

Solution : Let a = (a1, . . . , an) ∈ Rn, and let b = (1, . . . , 1) ∈ Rn. Then:

|a||b| =
√

a21 + · · ·+ a2n
√
1 + · · ·+ 1 =

√
n
√

a21 + · · ·+ a2n ≥ |a · b| = |a1 + · · ·+ an| = 1

from which the result follows, where we’ve used the Cauchy-Schwarz inequality in the

middle there.

Comments: This seems really easy, but it’s tricky to come up with if you’re not looking

for Cauchy-Schwarz everywhere like we are.

There’s a lot you can say about this problem. They were told the definition of a norm in

general, so you’re welcome to introduce the Taxicab Norm (which they haven’t seen), prove

it’s a norm, and note that the set of points a = (a1, . . . , an) ∈ Rn satisfying the condition

in the question is two lines which form the part of the “unit circle” in that norm in the

first and third quadrants.



If you draw a picture of the situation in R2 it’s quite nice, since the set of points (a1, a2) such

that |a1|+ |a2| = 1 is a diamond centred at the origin, and the inscribed circle is precisely

the circle of radius 1√
n
, which you can read off from the picture and easy geometry. The

situation is the same in higher dimensions, though harder to picture. If you can draw an

octahedron with its inscribed sphere, go for it. It’ll be cool. The picture also tells you that

the problem is true for the whole unit circle in the Taxicab norm.


