
Partial Big List Solutions
MAT 237 – Advanced Calculus– Summer 2015

Solutions

# 1.6 Let f : A→ B be a map of sets, and let {Xi}i∈I be an indexed collection of subsets of A.

(a) Prove that f(∪i∈IXi) = ∪i∈If(Xi)

(b) Prove that f(∩i∈IXi) ⊆ ∩i∈If(Xi)

(c) When does equality of sets hold in the b)

Proof (a) Let’s begin with the forward containment. Take y ∈ f(∪i∈IXi), now there must be i such that

x ∈ Xi ⊆ ∪i∈IXi with the property f(x) = y. More specifically, we see y ∈ f(Xi) ⊆ ∪i∈If(Xi). Thus

f(∪i∈IXi) ⊆ ∪i∈If(Xi). The reserve containment is even easier since if y ∈ ∪i∈If(Xi), then we know there

must be an i such that y ∈ f(Xi). This means that some x ∈ Xi must get mapped to y, i.e. f(x) = y. Now

since x ∈ ∪i∈IXi, we clearly have y ∈ f(∪i∈IXi). With both continments shown, we’re done.

Proof (b) We only have to show the one containment, so take y ∈ f(∩i∈IXi). Using the same argument, we

see that there must be x ∈ ∩i∈IXi s.t. f(x) = y. Notice that since x is in the intersection of all {Xi}′s, we

necessarily have that x ∈ Xi for all i ∈ I. Thus y ∈ f(Xi) for all i ∈ I, which implies y ∈ ∩i∈If(Xi).

(c) One may check that injectivity of f is a necessary and sufficient condition for equality to hold.

# 1.13 The intent of this exercise is to show that if we were to start the course over and use open squares

instead of open balls in defining open sets, we would have actually had the same definition! Define a map

|| · ||∞ : Rn → R, ||x||∞ = max
i
{|xi|}

Where x = (x1, . . . , xi, . . . , xn). For any a ∈ Rn, let S(a, ε) = {x ∈ Rn : ||x− a||∞ < ε}. We say that a set U is

S-open (the S stands for square) if and only if for every a ∈ U , there exists ε > 0 such that S(a, ε) ⊆ U

(a) Make a sketch of S(0, 1) when n = 2
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(b) Show that for any x ∈ Rn, ||x||∞ 6 ||x|| 6
√
n||x||∞, where ||x|| =

√
x21 + . . .+ x2n.

Proof The lower bound follows by dropping everything by the largest x2i , since 0 < x2i for all i. The

upper bound is found by bounding every term by the largest xi, i.e. x2i < maxi x
2
i .

(c) Prove that U ⊆ Rn is S-open if and only if U is open.

Proof By drawing the sets, we see

Thus we may always fit an open square in an open ball, and an open ball in an open square.

(d) Consider the functions || · ||p : Rn → R, ||x||p = (|x1|p+ . . .+ |xn|p)1/p, where 1 < p <∞. Plot the sets (by

hand, or using a computer) {x ∈ R2 : ||x||p < 1}. Do you expect the p-balls to define the same collection

of open sets as the 2-balls? Explain.

Solution I’ve shown p = 3, 10 and 100.
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It appears that as p→∞, we’re approaching the same set as ||x||∞ < 1.

#2 .1 Let {xk} and {yk} be sequences such that xk → a and yk → b. Show that xk + yk → a + b and

xkyk → ab.

Proof Recall by definition

xk → a ⇐⇒ ∀ε > 0,∃N ∈ N such that |xk − a| < ε ∀k > N

Thus, if we fix ε > 0, we may choose N large enough s.t. |xk − a| < ε/2 and |yk − b| < ε/2, so

|xk + yk − (a+ b)| = |(xk − a) + (yk − b)| 6 |xk − a|+ |yk − b| <
ε

2
+
ε

2
= ε

by the triangle inequality. Since ε was arbitrary, we conclude that xk + yk → a+ b. To handle the product, we

see for ε > 0, we have some N s.t. xk < a+ ε and |yk − b| < ε, so

xkyk − ab < (a+ ε)yk − ab < a(yk − b) + εyk < |a|ε+ ε(|b|+ ε) = ε(|a|+ |b|) + ε2 6 ε̃

The other inequality is found by using a < xk + ε instead. Thus xkyk → ab.

#2.2 Let xk = 3k+4
k−5 . Given ε > 0, find an integer K such that |xk − 3| < ε for all k > K.

Proof We compute

|xk − 3| =
∣∣∣∣3k + 4

k − 5
− 3

∣∣∣∣ =

∣∣∣∣3k + 4− 3k + 15

k − 5

∣∣∣∣ =

∣∣∣∣ 19

k − 5

∣∣∣∣ < ε

If we simplify the expression, we see

19

k − 5
< ε =⇒ 19

ε
< k − 5 =⇒ 19

ε
+ 5 < k

So if we choose the the integer of the function of ε, i.e.

K =

⌈
19

ε
+ 5

⌉
this will suffice.

# 2.4 Find an example of a sequence {xk} such that |xk+1 − xk| → 0, but {xk} isn’t Cauchy.

Example A good example to have in mind is a partial sum of the Harmonic Series, namely

xk =

k∑
n=1

1

n

Clearly

xk+1 − xk =
1

k + 1
→ 0 as k →∞

but the series doesn’t converge.

lim
k→∞

xk =

∞∑
n=1

1

n
=∞

so the sequence isn’t Cauchy.
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# 2.5 Let S ⊆ R, and set L = inf S. Show there exists a sequence {xk} converging to L.

Proof The easiest way to show the claim is to build such a sequence. This is easily accomplished by considering

An = S ∩B
(
L,

1

n

)
Take any sequence such that xn ∈ An, by construction, we see that

xn → L

# 4.7 Let f, g : Rn → Rk be continuous functions and suppose that D ⊆ Rn is a dense set. If f(x) = g(x) for

every x ∈ D, then f(x) = g(x) for every x ∈ Rn.

Proof Consider h(x) = f(x)−g(x), note that h is continuous on Rn and h|D = 0. For the sake of contradiction,

suppose that h(x0) = a 6= 0 for some x0 ∈ Rn. Since h is continuous around x0, we must have for any ε > 0

that there is some δ > 0 such that

||x− x0|| < δ =⇒ ||f(x)− f(x0)|| < ε

But we know that h|D = 0 where D is dense in Rn, thus we must have that ||f(x0)|| = ||a|| < ε... This is a

contradiction since the statement fails if ε = ||a||/2 for example. Therefore no such a exists, which allows us to

conclude that h(x) = 0 for all x ∈ Rn.

# 5.6 Use the Bolzano-Weierstrass theorem to prove that if K1 ⊃ K2 ⊃ K3 ⊃ . . . is a chain of proper

containments and each Ki ⊆ Rn is compact, then ∩∞i=1Ki 6= ∅.

Proof Take any sequence such that xi ∈ Ki. Then clearly {xk} ⊂ K1 since K1 is the top containment. Now

we’re in a position to apply the Bolzano-Weierstras theorem since K1 is compact. The theorem implies that

there is a subsequence {xkj} that converges to some x ∈ K1. Now since Ki ⊃ Ki+1 and each Ki is compact

(this removes the possible issue of the limit point x lying on the boundary and not in the set), we have that

x ∈ Ki for all i. Thus x ∈ ∩∞i=1Ki, which means that the intersection isn’t empty.

# 6.7 Let S ⊆ Rn. S is disconnected if and only if there exists a continuous function f : S → R such that

f(S) = {0, 1}.

Proof ( =⇒ ) Suppose that S is disconnected, so S = S1∪S2 and S1∩S̄2 = ∅,S̄1∩S2 = ∅ for some S1, S2 ⊆ S.

Define

f(x) =

{
0, x ∈ S1

1, x ∈ S2

Clearly f is continuous and satisfies f(S) = {0, 1}. ( ⇐= ) Suppose we have f(S) = {0, 1} and continuous.

Since the image has only two points, define S1 = f−1(0) and S2 = f−1(1). Clearly S = S1 ∪S2, now we’ll show
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these sets form a disconnection. Suppose that S1 ∩ S̄2 6= ∅ i.e we have some x0 ∈ S1 ∩ S̄2... but f is continuous,

so for all ε > 0 we have some δ > 0 such that

||x− x0|| < δ =⇒ |f(x)− f(x0)| = |f(x)| < ε

We see if we choose x ∈ S2, the inequality is violated with any ε < 1, i.e. f isn’t continuous. Thus we’ve reached

a contradiction, which implies we must have S1 ∩ S̄2 = ∅. Since S̄1 ∩ S2 = ∅ follows with the same argument,

we’re done.

# 7.8 Let S ⊆ R3 be the set of points, such that each point in the set has equal distance to (−1, 0, 0) and to

the plane x = 1. Find an equation F (x, y, z) such that S = {(x, y, z) ∈ R3 : F (x, y, z) = 0}. Sketch this surface.

Proof Let’s find a generic point in the set. i.e. suppose x ∈ S, then we must have

||x− (−1, 0, 0)|| = ||x− (1, a, b)||

where x = (x, y, z) and a, b,∈ R. Expanding out this equality reveals

(x+ 1)2 + y2 + z2 = (x− 1)2 + (y − a)2 + (z − b)2

Simplify the above by moving everything to the LHS to obtain

F (x, y, z) = 4x+ a(2y − a) + b(2z − b) = 0

Now we just have to peg down a and b. You could match everything with normal vectors or something, but we

just want to minimize the distance from x to the plane. i.e.

min
a,b∈R

||x− (1, a, b)||

clearly we may do this by choosing y = a and b = z since (y − a)2 = (z − b)2 = 0 ⇐⇒ y = a and z = b. Thus

we see the function whose level set describes the surface is

F (x, y, z) = 4x+ y2 + z2

Clearly this surface is a paraboloid, with a graph like
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# 8.12 Let C([0, 1]) be the collection of all continuous functions on the closed unit interval, given the sup

norm norm. Consider the map:

F =

ˆ t

0

: C([0, 1])→ C([0, 1])

F (f) =

ˆ t

0

f(x)dx

Compute DFf .

Proof By definition of the directional derivative we need to estimate

DFf (g) = lim
h→0

F (g + hf)− F (g)

h

for h ∈ R and f, g ∈ C([0, 1]). By linearity of the integral, we see

F (g + hf) =

ˆ t

0

[g(x) + hf(x)]dx =

ˆ t

0

g(x)dx+ h

ˆ t

0

f(x)dx = F (g) + hF (f)

Thus

DFf (g) = lim
h→0

hF (f)

h
= F (f)

# 10.8 Let A : Rn → Rn be a linear map. Show that on the set S = {v ∈ Rn : ||v|| = 1} , the maximum and

the minimum of A are the largest and smallest eigenvalues of A, respectively.

Proof Using Lagrange multipliers, we see we’re looking for D(||Ax||) = λDg(x) where g(x) = ||x|| = 1. Note

that Dg(x) = x and

||Ax||2 =

n∑
i=1

 n∑
j=1

aijxj

2

=⇒ D(||Ax||) =
1

2||Ax||
2ATAx

Thus we’re trying to solve
ATAx

||Ax||
= λx =⇒ ATAx = λ||Ax||x

If we take the inner product (dot product) against x now, we see (since ||x|| = 1)

||Ax||2 = Ax ·Ax = xTATAx = λ||Ax||xTx = λ||Ax|| ||x||2 =⇒ ||Ax|| = λ||x||2 = λ

Thus the Lagrange multiplier equation has now become

ATAx = λ2x

i.e. x is an eigenvector of ATA with eigenvalue λ2. Now we simply have to take the largest eigenvalue to

maximize ||Ax|| and the smallest eigenvalue to minimize ||Ax||.

# 11.8 A map f : Rn → Rn is said to be open if whenever U is open then f(U) is open. Show that if f is C1

and Df(x0) is invertible for all x0 ∈ Rn then f is an open map.
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Proof By the inverse function theorem we know that f is invertible around some neighbourhood of every

x0 ∈ Rn (since f is C1 and det ∂ijf 6= 0). Defining f−1 : Rn → Rn to be the piecewise continuous collection

of the local inverse functions we have a continuous global inverse. Thus f is a continuous bijective map (a

homeomorphism), i.e. if U ⊆ Rn is open then f(U) is open.

# 11.2.6 Consider the curve γ : R→ R2 given by γ(t) = 2e−t/2(cos(t), sin(t)).

(a) Show that γ(t) defines a C1 curve.

(b) Calculate the speed of this curve as a function of t.

(c) We define the unit tangent vector to the curve to be T (t) = γ′(t)/||γ′(t)||. Compute the unit tangent

vector.

(d) Arc-length of a curve on the interval [0, t] is given by

s(t) =

ˆ t

0

||γ′(u)||du

Compute the arc-length function s(t) for the curve γ

(e) Inverting the arc-length formula gives a function t(s) ( time as a function of arc-length). The reparam-

eterization of the curve γ(t) using t = t(s) is known as the arc length parameterization. Compute the

arc-length parameterization of γ(t).

Proof (a) Note that

γ′(t) = e−t/2(− cos(t)− 2 sin(t),− sin(t) + 2 cos(t)) 6= 0 ∀t ∈ R

Thus γ(t) is a smooth curve.

Proof (b) The speed of the curve is given by

||γ′(t)|| = 5e−t(cos2(t) + sin2(t)) = 5e−t

Proof (c) We compute the unit tangent vector

T (t) =
γ′(t)

||γ′(t)||
=
et/2

5
(− cos(t)− 2 sin(t),− sin(t) + 2 cos(t))

Proof (d) We compute arc-length

s(t) =

ˆ t

0

||γ′(u)||du =

ˆ t

0

5e−udu = 5(1− e−t)

Proof (e) The arc-length parameterization is given by

s = 5(1− e−t) =⇒ e−t =
5− s

5
=⇒ t(s) = ln

(
5

5− s

)
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# 12.1.6 Show that if f : [a, b] → R is Riemann integrable, then F (x) =
´ x
a
f(s)ds is uniformly continuous

on [a, b].

Proof Recall that a continuous function on a compact set A of a metric space is uniformly continuous on A.

Since A = [a, b] ⊆ R is compact, it suffices to show that F (x) is continuous. Therefore fix ε > 0 and let’s try to

find δ such that

|x− y| < δ =⇒ |F (x)− F (y)| < ε

Notice that

|F (x)− F (y)| =
∣∣∣∣ˆ x

a

f(s)ds−
ˆ y

a

f(s)ds

∣∣∣∣ =

∣∣∣∣ˆ y

x

f(s)ds

∣∣∣∣
Since f is Riemann integrable, f is bounded. We see the easy upper bound of

|F (x)− F (y)| 6 max
z∈[a,b]

∣∣∣∣f(z)

ˆ y

x

ds

∣∣∣∣ = max
z∈[a,b]

|f(z)||x− y| < ε

Now the choice of δ is obvious, choose

δ =
ε

maxz∈[a,b] |f(z)|
Which shows F (x) is continuous, i.e. F (x) is uniformly continuous on [a, b].

# 12.2.4 If S = {x1, . . . , xn} is a finite set consisting of precisely n-elements, show that S has zero Jordan

measure.

Proof We already know a point has zero measure, and the finite union of measure zero sets has zero measure.

So S clearly has zero measure.

# 13.4.10 Let F (x) = (F1(x), F2(x), F3(x)) be a vector field in R3.

(a) For arbitrary h > 0, let Sn = {(x, y, z) : x2 + y2 + z2 = h2} be the sphere of radius h. Parametrize Sh be

a function g : [a, b]× [c, d]→ R3. Compute ∂sg × ∂tg

(b) Under the assumption that h is very small, we can use a first order approximation on the functions Fi.

Write out the linear approximations for Fi(x) at (0, 0, 0) and evaluate these on the parameterization.

(c) Use parts a) and b) to determine F (g(t)) · (∂sg × ∂tg). [Ignore terms of order h2].

(d) Compute

lim
h→0

3

4πh3

‹
Sh

F · ndS

Compare this to the divergence. Conclude that divergence is the infinitesimal flux. [Note that 4πh3/3 is

the volume of the sphere, so we are normalizing by volume in the limit].

Proof (a) The most natural parametrization would be spherical coordinates, hence

g(θ, φ) = (x, y, z) = h(cos θ sinφ, sin θ sinφ, cosφ) where (θ, φ) ∈ [0, 2π]× [0, π]

is a good choice of parameterization. To compute the normal ∂θg × ∂φg you can go through the computation,

or recall that the radial direction is the outward normal, i.e.

1

h

∂g

∂θ
× ∂g

∂φ
= g(θ, φ)
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Proof (b) We’re asked to give the first order taylor expansion around 0. We compute

F (x) = F (0) + ∂xF (0)x+ ∂yF (0)y + ∂zF (0)z +O(2nd Order term)

Proof (c) Combining the above expressions together, we see

F (g(θ, φ)) · n = F (g(θ, φ)) · g(θ, φ)

h
=

=
1

h

(
F1(0)g1 + F2(0)g2 + F3(0)g3 + ∂xF1(0)g21 + ∂yF2(0)g22 + ∂zF3(0)g23 + odd terms

)
+O(h2)

Proof (d) We compute

lim
h→0

3

4πh3

‹
Sh

F ·ndS = lim
h→0

3

4πh

ˆ 2π

0

ˆ π

0

F ·n sinφdφdθ =
3

4π

ˆ 2π

0

ˆ π

0

(∂xF1g
2
1 sinφ+∂yF2g

2
2 sinφ+∂zFzg

2
3 sinφ)dφdθ

Noting ˆ 2π

0

ˆ π

0

cos2 θ sin3 φdφdθ =
4π

3
&

ˆ 2π

0

ˆ π

0

cos2 φ sinφdφdθ =
4π

3

We see

lim
h→0

3

4πh3

‹
Sh

F · ndS = ∂xF1(0) + ∂yF2(0) + ∂zF3(0) = div F (0)

Re-centering the sphere around any x ∈ R3 shows we have that more generally that

lim
V→{x}

1

|V |

‹
S(V )

F · ndS = div F (x)

#13.5.4 Let S be a smooth oriented surface in R3 with piecewise smooth, compatible oriented boundary ∂S.

Show that if f ∈ C1 and g ∈ C2 on S then
ˆ
∂S

f∇g · dx =

¨
S

(∇f ×∇g) · ndA

Proof Recall Stoke’s Theorem ˆ
∂S

F · dx =

ˆ
S

(∇× F ) · ndA

and notice the curl of the quantity in question is

∇× (f∇g) = ∇f ×∇g + f (∇×∇g)︸ ︷︷ ︸
curl(grad(g))=0

= ∇f ×∇g

Applying Stoke’s Theorem gives the claim.

13.6.5 Let f : Rk → R be a 0-form and F : Rn → Rk. Show that F ∗df = d(f ◦ F ).
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Proof Let’s perform the computation(with the convention that x = F (y) under the pullback).

F ∗df =F ∗

(
k∑
i=1

∂f

∂xi
(x)dxi

)
expanding the differential of the 0-form

=

k∑
i=1

F ∗
(
∂f

∂xi
(x)dxi

)
pullback is linear on differential forms

=

k∑
i=1

∂f

∂xi
(F (y))d(Fi(y)) applying the pullback

=

k∑
i=1

 ∂f

∂xi
(F (y))

n∑
j=1

∂Fi
∂yj

dyj

 expanding the differential of F (y)

=

n∑
j=1

(
k∑
i=1

∂f

∂xi
(F (y))

∂F

∂yi
(F (y))

)
dyj rearranging the sum

=

n∑
j=1

∂f

∂yj
(F (y))dyj via chain rule

=d(f ◦ F ) this is the definition of the differential

13.6.6 A k-form ω is said to be decomposable if ω = ω1 ∧ . . .∧ ωk where the ωi are 1-forms. The form is said

to be indecomposable otherwise.

(a) Show that dx ∧ dy + dx ∧ dz + dy ∧ dz is decomposable in R3

(b) Show that dx ∧ dy + dz ∧ dω is indecomposable.

Proof (a) We have that

dx ∧ dy + dx ∧ dz + dy ∧ dz = (dx+ dy)︸ ︷︷ ︸
=ω1

∧ (dy + dz)︸ ︷︷ ︸
=ω2

Proof (b) Suppose the 2-form was decomposable, we’d therefore have

(a1dx+ a2dy + a3dz + a4dω) ∧ (b1dx+ b2dy + b3dz + b4dω) = dx ∧ dy + dz ∧ dω

i.e. 

a1b2 − b1a2 = 1

a1b3 − a3b1 = 0

a1b4 − a4b1 = 0

a2b3 − a3b2 = 0

a2b4 − a4b2 = 0

a3b4 − a4b3 = 1

But the above system has no solution, those the decomposition doesn’t exist.
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